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Abstract

Anthropomorphism is a common phenomenon when people attribute human

characteristics to non-human objects. It plays an important role in accep-

tance of robots in natural human environments. Various studies in the field

of Human-Robot Interaction (HRI) show that there are various factors that

can affect the extent to which a robot is anthropomorphized. However, our

knowledge of this phenomenon is segmented, as there is a lack of a coherent

model of anthropomorphism that could consistently explain these findings.

A robot should be able to adjust its level of anthropomorphism to a level

that can optimize its task performance. In order to do that, robotic system

designers must know which characteristics affect the perception of robots’

anthropomorphism. Currently, existing models of anthropomorphism em-

phasize the importance of the context and perceiver in this phenomenon,

but provide little guidelines regarding the factors of a perceived object that

are affecting it.

The proposed reverse process to anthropomorphization is known as de-

humanization. In the recent years research in social psychology has found

which characteristics are deprived from people who are perceived as subhu-

mans or are objectified. Furthermore, the process of dehumanization is two

dimensional rather than unidimensional. This thesis discusses a model of

anthropomorphism that uses characteristics from both dimensions of dehu-

manization and those relating to robots’ physical appearance to affect the

anthropomorphism of a robot. Furthermore, involvement of implicit and

explicit processes in anthropomorphization are discussed.

In this thesis I present five empirical studies that were conducted to ex-

plore anthropomorphism in HRI. Chapter 3 discusses development and vali-

dation of a cognitive measurement of humanlikeness using the magnitude of

the inversion effect. Although robot stimuli were processed more similarly

to human stimuli rather than objects and induced the inversion effect, the

results suggest that this measure has limited potential for measuring human-

likeness due to the low variance that it can explain. The second experiment,

presented in Chapter 4 explored the involvement of Type I and Type II pro-

cessing in anthropomorphism. The main findings of this study suggest that



anthropomorphism is not a result of a dual-process and self-reports have a

potential to be suitable measurement tools of anthropomorphism.

Chapter 5 presents the first empirical work on the dimensionality of an-

thropomorphism. Only perceived emotionality of a robot, but not its per-

ceived intelligence, affects its anthropomorphization. This finding is further

supported by a follow up experiment, presented in Chapter 6, that shows

that Human Uniqueness dimension is less relevant for a robot’s anthropo-

morphiazability than Human Nature (HN) dimension. Intentionality of a

robot did not result in its higher anthropomorphizability. Furthermore, this

experiment showed that humanlike appearance of a robot is not linearly re-

lated with its anthropomorphism during HRI. The lack of linear relationship

between humanlike appearance and attribution of HN traits to a robot dur-

ing HRI is further supported by the study described in Chapter 7. This last

experiment shows also that another factor of HN, sociability, affects the ex-

tent to which a robot is anthropomorphized and therefore the relevance of

HN dimension in the process of anthropomorphization.

This thesis elaborates on the process of anthropomorphism as an impor-

tant factor affecting HRI. Without fully understanding the process itself and

what factors make robots to be anthropomorphized it is hard to measure

the impact of anthropomorphism on HRI. It is hoped that understanding

anthropomorphism in HRI will make it possible to design interactions in a

way that optimizes the benefits of that phenomenon for an interaction.
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Chapter I

Introduction & related work

The development of technology enables the creation of robots that start

resembling humans in appearance and behavior. However, the increased

possibilities created by engineering do not always go hand in hand with our

understanding of what really does it mean to be a human and why people

perceive objects as human beings.

The work described in this thesis took a multidisciplinary approach and

it was written for readers with human-robot interaction, social sciences or

engineering backgrounds. It is hoped that social psychologists and philoso-

phers will find the work on determining factors affecting anthropomorphism

beneficial. Engineers are provided with a model that helps to chose factors

that can affect the degree to which a robot is anthropomorphized. Moreover,

cognitive scientists can benefit from extension of measures of anthropomor-

phism from self-reports to implicit measures.

In this thesis anthropomorphism is defined as attribution of human spe-

cific characteristics to either real or imagined nonhuman agents, such as

humanness or inner mental states [68]. This definition requires defining the

term humanness. Humanness is a quality that is denied to others when they

are dehumanized [102]. It constitutes of two distinct dimensions: Human

Uniqueness and Human Nature. These two dimensions will be discussed in

detail in Chapter 2.

The process of anthropomorphism occurs within a human observer rather

than being a property of a robot. On the other hand, a robot’s appearance

can affect the extent to which the robot is anthropomorphized. Therefore, to

differentiate the psychological process of anthropomorphism from the phys-

ical properties of a robot, humanlikeness in this thesis represents the extent

to which a robot appears and moves like a human. Another term used in

this thesis, anthropomorphic, refers to a robot (or another nonhuman agent)

1



which humanlike appearance or behaviour can induce anthropomorphization

of it in human observers.

In the next section, I present a broad literature review of anthropomor-

phism that involves psychological and philosophical perspectives. It is fol-

lowed by a discussion about the goals of my research and ethical concerns

regarding the work. The following chapter introduces psychological work on

which the model of anthropomorphism is based as well as the model itself.

The other chapters of this dissertation present empirical evaluation of the

model and, in the conclusions section, the findings are summarized and the

updated model is presented.

1.1 Current understanding of anthropomorphism

Anthropomorphism has a major impact on human behaviour, choices, and

laws. People regularly make anthropomorphic attributions when describing

their surrounding environment including animals [56], moving geometrical

figures [111] or weather patterns [101]. Based on evidence for the presence of

mind, captive chimpanzees were granted limited human rights in Spain [2].

People often refer to our planet as ‘Mother Earth’ and anthropomorphism is

often used in discussions regarding environmental issues [220]. Building on

this common tendency, humanlike form has been used to design technology

[65] and sell products [1, 5].

Due to higher anthropomorphizability of robots, humanlike design could

be used to a greater extent to impact an interaction compared with other

technologies [128]. An increasing number of industrial and service robots

yields a question of designing this technology in order to increase its effi-

ciency and effectiveness. In this section we take a broad perspective that

involves multiple fields of science to discuss benefits and disadvantages of

anthropomorphic robots. In this section we present viewpoints of empirical

work from HRI and social psychology, and a philosophical discourse on the

issue of designing anthropomorphic technology.

In the next subsection we present perspectives from different fields on the

process of anthropomorphization and how the general public’s view differs

from the scientific knowledge. In subsection 1.1.2 we include a broad litera-

2



ture review of research on anthropomorphism in the field of HRI. In subsec-

tion 1.1.3 we discuss why creating anthropomorphic robots can be beneficial

and what opportunities it creates for HRI. Subsection 1.1.4 is dedicated to

a discussion on potential problems that anthropomorphic technology might

elicit. In subsection 1.1.5 we propose solutions to some of these problems

that could be applied in HRI.

1.1.1 Why do we anthropomorphize?

From a psychological perspective, the central questions about anthropomor-

phism are: what explains the origin and persistence of anthropomorphism?

Psychologists and anthropologists have explained the origin of anthropomor-

phism as an adaptive trait, for example with respect to theistic religions.

They speculate that early hominids who interpreted ambiguous shapes as

faces or bodies improved their genetic fitness, by making alliances with neigh-

bouring tribes or by avoiding threatening neighbours and predatory animals

[99, 29, 31, 30, 13, 35]. But what explains the persistence of anthropomor-

phizing? Here theorists hypothesize that there are neural correlates of an-

thropomorphizing [183, 201], specific anthropomorphizing mechanisms (e.g.

the hypothesized hypersensitive agency detection device or HADD [15, 14]),

and diverse psychological traits that generate anthropomorphizing behaviour

[36]. They also suggest (again in the case of theistic religions) that confirma-

tion bias [13] or difficulties in challenging anthropomorphic interpretations of

the environment may underlie the persistence of anthropomorphizing [171].

Although people make anthropomorphic attributions to various types of

non-human agents, not all agents are anthropmorphized in the same way.

Anthropomorphization of animals is distinct from the tendency to anthropo-

morphize artifacts, such as cars or computers [50]. There are gender differ-

ences in this tendency when the target is an animal, with females more likely

to make anthropomorphic attributions than males [50]. However, when an-

thropomorphizing machines, males and females are equally likely to exhibit

this tendency.
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A philosophical perspective on anthropomorphism

From a philosophical perspective, the central questions about anthropomor-

phism are: can we make a principled distinction between justified and un-

justified anthropomorphism, and if so how? Is anthropomorphizing justi-

fied? If anthropomorphism is a ‘natural’ behaviour, this question may seem

odd. Some researchers in AI have argued that there is not anything to the

notion of mind but an evolved human tendency to anthropomorphize; an

entity’s having a ‘soul’ is nothing over and above the tendency of observers

to see the entity in this way. On this view, humans are ‘natural-born du-

alists’ [34, p. xiii]. However, the intuition that anthropomorphizing can be

illicit is strong—for example, my automobile is not a person, even if I at-

tribute human and personal characteristics (and have affective responses) to

it. Researchers in AI claim that their machines have cognitive and affective

characteristics, either explicitly or implicitly (e.g. [222, 115]), and this is in

particular true in the case of anthropomorphic robots and software agents.

These assertions require philosophical analysis and evaluation, along with

empirical investigations. Determining under what conditions the anthropo-

morphizing of machines is justified and under what conditions unjustified is

central to the question of whether ‘expressive’ or ‘emotional’ robots actually

have emotions (see e.g. [4, 7]). It is also key to the growing debates within

AI about the ethical use of artificial systems.

In this regard, a combination of philosophical analysis and experimental

work is required, but to our knowledge has not been carried out. In the large

body of experimental work on human reactions to anthropomorphic robots,

responses on standard questionnaires are commonly taken to demonstrate

that subjects identify a robot’s displays or movements as (for example) ex-

pressions of the fundamental human emotions—happiness, sadness, disgust,

and so on (see e.g. [43]). The robot is said to smile or frown. However,

taking these responses (in forced choices) at face value ignores the possibility

that they are elliptical for the subjects’ actual views. To use an analogy,

it is common when discussing fictions to omit the logical prefixes such as

‘I imagine that ...’ or ‘Make-believedly ...’—for example, we say ‘Sherlock

Holmes lives at 221B Baker Street’ when we mean ‘In the fiction, Sherlock

4



Holmes lives at 221B Baker Street’. Something similar may be occurring in

discussions of anthropomorphic robots; saying that the robot has a ‘happy’

expression might be shorthand for the claim (for example) that if the robot

were a human, it would have a happy expression. A fine-grained ‘philosoph-

ical’ experiment might allow us to find out if this is the case. Experimental

philosophy has gained ground in some areas of traditional a priori argument

such as ethics; it might be used in AI to enable more accurate analysis of

human reactions to anthropomorphic robots.

Science-fiction as a proxy to general public’s perception

It can be argued that almost all prior knowledge of participants about robots

in HRI studies stem from the media. An extensive discussion on how robots

are being portrayed in the media is available [17]. There are two main story

types that run through the media about robots. One is that robots want to

be like humans (e.g. Mr. Data), and the other that once a superior level of

intelligence and power is achieved will want to kill or enslave humanity (e.g.

Lore). These rather negative views on the future of human-robot relation-

ships are based on the media industry’s need to produce engaging stories.

Fear is the single most used method to engage the audience. A future world

in which humans and robots live happily side by side is rare. The TV show

Futurama and the movie Robot and Frank comes to mind as the glowing

exceptions. The stories presented in the media that focus on robots can be

categorized along the questions whether the body and/or the mind of the

robot is similar to humans. If we take Mr. Data again as an example, he

does look very much like a human, but his mind functions differently. From

this the writers can form engaging themes, such as Data’s quest to under-

stand humor and emotions. And we are surprised when Data emerges from

the bottom of a lake without any specific gear. His highly humanlike form

makes us believe that he might also need oxygen, which he does not. In

summary, the media has used robots extensively and most of the knowledge

and expectations that the people on the street have are based on these media

and not on the scientific literature.
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1.1.2 Anthropomorphism in HRI

Reeves and Nass [175], in their classical work on the ‘Computers are Social

Actors’ paradigm, showed that people engage in social interaction with var-

ious types of media. Therefore, designers of interactive technologies could

improve this interaction, building on the chronic tendency of people to an-

thropomorphize their environment. Due to their higher anthropomorphiz-

ability and physical autonomy in a natural human environment, robots are

especially well suited to benefit from anthropomorphism [128]. Furthermore,

physical presence in the real world (rather than being merely virtual) is an

important factor that can also increase the anthropomorphic quality of robots

[129]. Mere presence of a robot was found to lead to the social facilitation

effect (the increased performance of easy tasks and decreased performance

of difficult tasks in presence of others compared to doing tasks alone) [179].

Moreover, when playing a game against a robotic opponent, people may uti-

lize similar strategies as when they play against a human [200]. They also

hold robots more accountable for their actions than other non-human objects

[121]. This tendency cannot be observed when an opponent is a disembodied

computer. On the other hand, Levin et al. [137] suggests that people initially

equate robots and disembodied computers in terms of intentionality. How-

ever, when they focus on the intentional behaviour of a robot, this tendency

can be overridden.

Factors affecting anthropomorphism

Anthropomorphism is affected not only by physical appearance. Hegel et al.

[109] created a typology of signals and cues that robots emit during inter-

action and which can affect their perceived humanlikeness. Choi and Kim

[51] proposed that anthropomorphizability of robots involves: appearance,

human-robot interaction, and the accordance of the two former measure-

ments. The distinction between the humanlike form in appearance and in

behaviour can also be found in the model presented by von Zitzewitz et al.

[209].

External appearance can influence the perception of an object [189]. Ac-

cording to Fong et al. [84], we can classify robots based on their appearance
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Figure 1.1: Robots with different humanlike features in appearance. From the left: Te-
lenoid, Robovie R2, Geminoid HI-2, Papero, NAO.

into four categories: anthropomorphic, zoomorphic, caricatured, and func-

tional. In the field of robotics there is an increased tendency to build robots

that resemble humans in their appearance. In recent years we can observe an

increased number of robots that are built with legs rather than wheels [49].

Some researchers suggest that, in order to create robots with an humanlike

appearance that are capable of engaging in interaction with humans in a

way analogous to human-human interaction, it is necessary to build robots

with features that enable them to perceive the world similarly to humans,

i.e. using two cameras (in place of eyes) and two microphones (ears) [194].

Di Salvo et al. [62] state that it is the presence of certain features and the

dimensions of the head that have a major impact on the perception of a hu-

manoid’s head as humanlike. Humanlike form in appearance has even been

attributed to flying robots [54].

However, research into anthropomorphism in the field of HRI has not

been limited to the humanlike form of a robot’s appearance. HRI factors

were found to be even more important than embodiment in the perceived

humanness of robots [127]. Kahn et al. [120] presented six benchmarks in

HRI that constitute essential features affecting robots’ perceived humanlike-

ness: autonomy, imitation, intrinsic moral value, moral accountability, pri-

vacy, and reciprocity. Previous studies proposed other factors, such as verbal

[192] and non-verbal [182, 147] communication, the perceived ‘emotions’ of

the robot [74], the intelligence of the machine [19] or its predictability [77].

Moreover, robots that exhibit typically human behaviours, such as cheating,

are also perceived as more humanlike [191]. There is a philosophical question,

whether such behaviour really makes robots more humanlike or if instead it
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is necessary for them to ‘truly’ feel emotions and have intentions. However,

Turkle [207] points out that the behaviour of robots is more important than

their inner states for them to be treated as companions.

Anthropomorphism of a robot is the result not only of its actions, but also

of an observer’s characteristics, such as motivation [69], social background

[73], gender [78], and age [123]. Moreover, the social relationship between a

robot and a human can affect the degree to which a robot is attributed hu-

manness. People apply social categorizations to robots and those machines

that are perceived as ingroup members are also anthropomorphized more

strongly than outgroup robots [76, 131]. Therefore, it should not be surpris-

ing that a robot that has the physical appearance of a member of another

race is treated as a member of an outgroup and perceived as less humanlike

by people with racial prejudices [79]. There is also empirical evidence that

mere HRI can lead to increased anthropomorphization of a robot.

Consequences of anthropomorphizing robots

Despite multiple ways in which we can make robots more humanlike, an-

thropomorphism should not be a goal on its own as people differ in their

preferences regarding the appearance of a robot. These differences can have

cultural [73] or individual (personality) [197] origins. Goetz et al. [93] empha-

sized that, rather than aiming to create the most humanlike robots, embod-

iment should be designed in a way that matches the robots’ tasks. Anthro-

pomorphism has multiple desirable and undesirable consequences for HRI.

A robot’s embodiment affects the perception of their intelligence and inten-

tionality on neuropsychological and behavioural levels [110]. More visual

attention is attracted by humanlike or zoomorphic than inanimate robots

[11]. Furthermore, similar perceptual processes are involved when observing

the movement of a humanoid and of a human [155]. Based on the physical

appearance of a robot, people attribute different personality traits to it [212].

Moreover, people use cues, such as a robot’s origin or the language that it

speaks, in order to create a mental model of the robot’s mind [135].

People behave differently when interacting with a pet robot than with

a humanoid robot. Although they provide commands in the same way to
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both types of robots, they differ in the type of feedback; in the case of a

humanoid robot this is much more formal and touch-avoiding [8]. Similarly,

Kanda et al. [124] found that the physical appearance of a robot does not

affect the verbal behaviour of humans, but is exhibited in more subtle way

in humans’ non-verbal behaviour, such as the preferred interaction distance

or delay in response. This finding was further supported by Walters et al.

[213] who showed that the comfortable approach distance is affected by the

robot’s voice. Furthermore, androids can be as persuasive in HRI as humans

[153], which could be used to change people’s behaviour to be more useful

for the robot.

1.1.3 Benefits and opportunities of anthropomorphic robots

From the literature review presented in the previous subsection, it becomes

clear that there are multiple ways in which robots can be designed in order

to create an impression of humanlikeness. This creates an opportunity to

positively impact HRI by building on the phenomenon of anthropomorphism.

DiSalvo and Gemperle [61] suggested that the four main reasons for designing

objects with humanlike shapes are: keeping things the same (objects which

historically had humanlike forms maintain this appearance as a convention),

explaining the unknown (humanlike shapes can help to explain products with

new functionality), reflecting product attributes (using humanlike shapes to

emphasize a product’s attributes) and projecting human values (influencing

the experience of a product via the socio-cultural context of the user).

Facilitation of HRI

The practical advantage of building anthropomorphic robots is that it facil-

itates human-machine interaction (see e.g. [80, 211, 81, 91]). It also creates

familiarity with a robotic system [51] and builds on established human skills,

developed in social human-human interactions [189]. A humanlike machine

enables an untrained human user to understand and predict the machine’s

behaviour [189]—animatronic toys and entertainment robots are an obvious

example but anthropomorphizing is valuable too in the case of industrial
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robots (see e.g. Rod Brooks’s Baxter1). Believability is particularly impor-

tant in socially assistive robotics (see [199]). In addition, where a machine

requires individualized training, a humanlike appearance encourages human

observers to interact with the machine and so produces more training oppor-

tunities than might otherwise be available [40].

Considering that social robots may be used in public spaces in the future,

there is a need for ensuring that people will treat them properly, i.e. not de-

stroy them in an act of vandalism. We already know that people are less

reluctant to punish robots than human beings [24], although another study

did not show any difference in punishment between a dog-like robot AIBO

and a human partner [177]. Furthermore, lighter, but nevertheless still nega-

tive, forms of abuse and impoliteness towards a robot can occur when a robot

is placed in a social environment [176]. Therefore, it is necessary to coun-

teract these negative behaviours towards a robot. Anthropomorphism could

be used in order to increase people’s willingness to care about the well-being

of robots. Robots that are humanlike in both appearance and behaviour are

treated less harshly than machine-like robots [23, 18]. This could be related

to higher empathy expressed towards anthropomorphic robots, as their ap-

pearance and behaviour can facilitate the process of relating to them [178].

A robot that expresses ‘emotions’ could also be treated as more humanlike

[74], which could change people’s behaviour.

Depending on a robot’s task, different levels of anthropomorphism might

be required. A robot’s embodiment affects the perception of the robot as

an interaction partner [83]. The physical appearance of the robot is often

used to judge its knowledge [165]. Therefore, by manipulating the robot’s

appearance it is possible to elicit different levels of information from people,

i.e. less if conversation efficiency is desired or more when the robot should

receive a robust amount of detailed feedback. Furthermore, people comply

more with a robot whose degree of anthropomorphism matches the level of

a task’s seriousness [93]. In the context of educational robots that are used

to teach human pupils, a robot that can employ social supportive behaviour

while teaching can lead to superior performance by students [181]. Moreover,

1 See http://www.rethinkrobotics.com/resources/videos/.
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in some cultures humanlike robots are preferred over mechanistic robots [16].

Anthropomorphism as a psychological test-bed

From a psychological perspective, humanlike robots present a way to test

theories of psychological and social development. It may be possible to

investigate hypotheses about the acquisition (or deficit) of cognition and

affect, in particular the development of theory of mind (TOM) abilities

[185, 186, 94, 37], by modeling the relevant behaviours on robots (e.g. [187]).

Doing so would enable psychological theories to be tested in controlled, stan-

dardized conditions, without (it is assumed) ethical problems regarding con-

sent and treatment of infant human subjects. Here practical and theoretical

research goals are linked: devices such as robot physiotherapists must be

able to identify their human clients’ interests and feelings and to respond

appropriately—and so research on the acquisition of TOM abilities is essen-

tial to building effective service robots.

Philosophical origins of humanlike robots

From a philosophical perspective, two striking ideas appear in the AI liter-

ature on anthropomorphic robots. First, the notion of building a socially

intelligent robot (see e.g. [37, 42]). This replaces AI’s grand aim of building

a human-level intelligent machine (or Artificial General Intelligence (AGI))

with the language and intellectual abilities of a typical human adult—a

project that, despite some extravagant claims in the 1980s, has not suc-

ceeded. Instead the (still-grand) goal is to construct a machine that can

interact with human beings or other machines, responding to normal social

cues. A notable part of this is the aim to build a machine with the cogni-

tive and affective capacities of a typical human infant (see e.g. [188, 190]).

For several researchers in social and developmental robotics, this involves

building humanlike machines [118]. Second, the notion that there is noth-

ing more to the development of intentionality than anthropomorphism. We

unwittingly anthropomorphize human infants; a carer interprets a baby’s

merely reflexive behaviour as (say) social smiling, and by smiling in return

encourages the development of social intelligence in the baby. Some robotics
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researchers suggest that, if human observers interact with machines in ways

analogous to this carer-infant exchange, the result will be intelligent machines

(see e.g. [37, 41]). Such interaction will be easiest, it is implied, if it involves

anthropomorphic robots. The combination of these two ideas gives AI a new

take on the project of building a thinking machine.

Many concepts at the centre of this work in current AI were present at

the birth of the field, in Turing’s writings on machine intelligence. Turing

[204, 202] theorized that the cortex of the human infant is a learning machine,

to be organized by a suitable process of education (to become a universal

machine) and that simulating this process is the route to a thinking machine.

He described the child machine, a machine that is to learn as human infants

learn (see [169]). Turing also emphasized the importance of embodiment,

particularly humanlike embodiment [204, 202]—he did, though, warn against

the (hypothesized) uncanny valley [146] (see section below), saying that too

humanlike machines would have ‘something like the unpleasant quality of

artificial flowers’ [206, p. 486]. For Turing, the project of building a child

machine has both psychological and philosophical benefits. Concerning the

former, attempting to construct a thinking machine will help us, he said,

to find out how human beings think [203, p. 486]. Concerning the latter,

for Turing the concept of the child machine is inextricably connected to the

idea of a genuine thinking thing: the machine that learns to generalize from

past education can properly be said to have ‘initiative’ and to make ‘choices’

and ‘decisions’, and so can be regarded as intelligent rather than a mere

automaton [204, p. 429], [205, p. 393].

1.1.4 Disadvantages of anthropomorphism in HRI

Despite numerous advantages that anthropomorphism brings to HRI, there

are also some drawbacks related to humanlike design and task performance.

Anthropomorphism is not a solution, but a mean of facilitating an interac-

tion [65]. When a robot’s humanlikeness has a negative effect on interac-

tion, it should be avoided. For example, during medical checkups conducted

by a robot, patients felt less embarrassed with a machine-like robot than a

more humanoid robot [18]. Furthermore, the physical presence of a robot
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results in a decreased willingness of people to disclose an undesirable be-

haviour compared to a projected robot [129]. These findings suggest that a

machine-like form could be beneficial, as patients might provide additional

information—which otherwise they might have tried to hide, if they thought

it embarrassing—that could help toward a correct diagnosis. Moreover, pro-

viding a humanlike form to a robot might not be sufficient to facilitate peo-

ple’s interaction with it. People engage more in HRI when it is goal-oriented

rather than in a pure social interaction [10].

Furthermore, a robot’s humanlikeness leads to different expectations re-

garding its capabilities and behaviour compared to machine-like robots. Peo-

ple expect that humanlike robots will follow human social norms [196]. There-

fore, a robot that does not have the required capabilities to do so can decrease

the satisfaction of their human partners in HRI. Although in the short term

this can be counter-balanced by the higher reward-value due to the robot’s

humanlike appearance [196]. In the context of search and rescue, people felt

calmer when a robot had a non-humanlike appearance; considering that such

an interaction context is highly stressful for humans, apparently a robot’s

machine-like-aspects are more desirable [33]. A similar preference was shown

in the case of robots that are designed to interact in crowded urban environ-

ments [86]. People indicate that in the first place a robot should be functional

and able to complete its tasks correctly and only in the second place does its

enjoyable behaviour matter [139]. In addition, a robot’s movement does not

need to be natural because in some contexts people may prefer caricatured

and exaggerated behaviour [214]. There are also legal questions regarding

anthropomorphic technology that must be addressed. Android science has

to resolve the issue of the moral status of androids—or unexpected ramifica-

tions might hamper the field in the future [46].

The risks of anthropomorphism in AI

The disadvantages of building anthropomorphic robots also include the fol-

lowing, in ascending order of seriousness for AI. First, it has been claimed,

the phenomenon of anthropomorphic robots (at least as portrayed in fiction)

encourages the general public to think that AI has advanced further than
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it has in reality—and to misidentify AI as concerned only with humanlike

systems. Jordan Pollack remarked, for example, ‘We cannot seem to con-

vince the public that humanoids and Terminators are just Hollywood special

effects, as science-fictional as the little green men from Mars!’ [164, p. 50].

People imagine that service robots of the future will resemble robots from

literature and movies [152].

The second problem arises specifically for those researchers in social and

developmental robotics whose aim is to build anthropomorphic robots with

the cognitive or affective capacities of the human infant. Several theorists

claim that focusing on human-level and humanlike AI is a hindrance to

progress in AI: research should focus on the ‘generic’ concept of intelligence,

or on mindless intelligence [164], rather than on the parochial goal of human

intelligence (see e.g. [85, 108]). To quote Pollack again, AI behaves ‘as if

human intelligence is next to godliness’ [164, p. 51]. In addition, critics say,

the difficult goal of humanlike AI sets an unrealistic standard for researchers

(e.g. [52]). If sound, such objections would apply to the project of building

a child machine.

The third difficulty arises for any attempt to build a socially intelligent

robot. This is the forensic problem of anthropomorphism – the problem of

how we are reliably able to detect intelligence in machines, given that the

tendency to anthropomorphize leads us to find intelligence almost everywhere

[166, 168]. Researchers in AI have long anthropomorphized their machines

and anthropomorphic robots can prompt fantasy and make-believe in ob-

servers and researchers alike. Such anthropomorphizing is not ‘innocent’:

instead it introduces a bias into judgements of intelligence in machines and

so renders these judgements suspect.2 Even at the beginning of the field,

in 1948, Turing said that playing chess against a ‘paper’ machine (i.e. a

simulation of machine behaviour by a human being using paper and pencil)

‘gives a definite feeling that one is pitting one’s wits against something alive’

[204, p. 412]. His descriptions of his own machines were sometimes extrava-

gantly anthropomorphic—he said, for example, that his child machine could

not be sent to school ‘without the other children making excessive fun of

2 Daniel Dennett uses the notion of ‘innocent’ anthropomorphizing in [58].
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it’ [202, pp. 460-1]—but they were also plainly tongue-in-cheek. He made it

clear, when talking of ‘emotional’ communication between human and child-

machine3 (the machine was to be organised by means of ‘pain’ and ‘pleasure’

inputs) that this did ‘not presuppose any feelings on the part of the machine’

[202], [204, p. 461]. In Turing’s vocabulary, ‘pain’ is just the term for a signal

that cancels an instruction in the machine’s table.

Anthropomorphizing leaves AI with no trustworthy way of testing for in-

telligence in artificial systems. At best, the anthropomorphizing of machines

obscures both AI’s actual achievements and how far it has to go in order

to produce genuinely intelligent machines. At worst, it leads researchers to

make plainly false claims about their creations; for example, Yamamoto de-

scribed his robot vacuum cleaner Sozzy as ‘friendly’ [222] and Hogg, Martin,

and Resnick said that Frantic, their Braitenberg-like creature made of Lego

bricks, ‘does nothing but think’ [115].

In a classic 1976 paper entitled ‘Artificial Intelligence Meets Natural Stu-

pidity’, Drew McDermott advised scientists to use ‘colourless’ or ‘sanitized’

technical descriptions of their machines in place of unreflective and mislead-

ing psychological expressions [144, p. 4]. (McDermott’s target was ‘wish-

ful mnemonics’ [144, p. 4] but anthropomorphizing in AI goes far beyond

such shorthand.) Several researchers in social robotics can be seen as in

effect attempting to follow McDermott’s advice with respect to their an-

thropomorphic robots. These researchers refrain from saying that their ‘ex-

pressive’ robots have emotions, and instead say that they have emotional

behaviour. Kismet, Cynthia Breazeal’s famous (now retired) interactive ‘ex-

pressive’ robot was said (without scare-quotes) to have a ‘smile on [its] face’, a

‘sorrowful expression’, a ‘fearful expression’, a ‘happy and interested expres-

sion’, a ‘contented smile’, a ‘big grin’, and a ‘frown’ ([39, p. 584-8], [44, 38]).

However, this vocabulary is not sufficiently sanitized: for example, to say

that a machine smiles is to say that the machine has an intent, namely to

communicate, and an inner state, typically happiness.4 Here the forensic

3 Turing distinguished between communication by ‘pain’ and ‘pleasure’ inputs and ‘un-
emotional’ communication that by means of ‘sense stimuli’ [204]; for analysis see [170].

4 This is not to suggest that what makes a ‘smile’ into a smile is some feeling—an inner
state—in the robot. See [169, 167].
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problem of anthropomorphism reemerges. We need a test for expressive-

ness, as much as for intelligence, that is not undermined by our tendency to

anthropomorphize.

Uncanny valley

Anthropomorphism not only affects how people behave towards robots, but

also whether they will accept them in natural human environments. The

relation between the physical appearance of robots and their acceptance has

recently received major interest in the field of HRI. Despite this, there are

still many unanswered questions and most efforts are devoted to the uncanny

valley hypothesis [146]. This hypothesis proposes a non-linear relationship

between a robot’s degree of humanlikeness and its likeability. With increased

humanlikeness a robot’s likeability also increases; yet when a robot closely

resembles a human, but is not identical, this produces a strong negative

emotional reaction. Once a robot’s appearance is indistinguishable from that

of a human, the robot is liked as much as a human being [146].

It has been suggested that neurological changes are responsible for the

uncanny valley phenomenon [184]. Furthermore, it is the perceived higher

ability of humanlike robots to experience and have emotions that makes peo-

ple particularly uncomfortable with humanlike technology [97]. However, in

spite of its popularity the empirical proof of the uncanny valley hypothesis

is relatively sparse. Some studies did not find evidence supporting this hy-

pothesis [21], while others suggest that the relation between likeability and

appearance might have a different shape, one that resembles more a cliff than

a valley [20]. We believe that future research should address three key issues:

defining terminology, finding entities that lie between the deepest point of the

uncanny valley and the human level, and investigating the uncanny valley in

studies that involve actual HRI.

Up to now multiple terms have been used in place of the Japanese term

used by Mori to describe the uncanny valley [226]. This reduces the compa-

rability of the studies. Moreover, other researchers point out that even the

humanlikeness axis of the graph is not well-defined [48]. Efforts are spent

on trying to find a term that would fit the hypothesized shape of the valley
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rather than on creating a hypothesis that fits the data. It is also possible

that the term used by Mori might not be the most appropriate one and that

the problem does not lie only in the translation.

The uncanny valley hypothesis suggests that when a robot crosses the

deepest point of the uncanny valley its likeability will suddenly increase.

However, to date, no entity has been shown to exist that is similar enough to

a human for it to fit this description. We propose that work on the opposite

process to anthropomorphism could fill that niche. It has been suggested

that dehumanization, which is the deprivation of human qualities in real hu-

man beings, is such a process [102]. Work on dehumanization shows which

characteristics are perceived as critical for the perception of others as human.

Their elimination leads to people being treated as if they were not fully hu-

man. The studies of dehumanization show that there are two distinct senses

of humanness—uniquely human and human nature. Uniquely human char-

acteristics distinguish humans from other species and reflect attributes such

as intelligence, intentionality, or secondary emotions. On the other hand,

people deprived of human nature are perceived as automata and lacking in

primary emotions, sociability, or warmth. These two dimensions map well

onto the concept proposed for the dimensionality of mind-attribution that

was found to involve agency and experience [95]. Therefore, we could explore

the uncanny valley, not by trying to reach the human level starting from a

machine, but rather by using humans that are perceived as lacking some hu-

man qualities. There is some empirical evidence that anthropomorphism is

also a multi-dimensional phenomenon [228].

In addition, the majority of previous studies of the uncanny valley hy-

pothesis have used either static images or videos of robots. The question

remains how well these findings can be generalized to actual HRI. It is pos-

sible that the uncanny valley would have no effect on HRI or that it would

be limited to the very first few seconds of interaction. The studies of the

uncanny valley phenomenon in computer graphics indicate that this phe-

nomenon might be related to the exposure to a specific agent [60]. Increased

familiarity with an agent could be related with decreased uncanniness felt as

a result of its appearance. The physical appearance of a robot is not the most

important factor in anthropomorphism [127]. Furthermore, the perception
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of humanlikeness changes during interaction [88]. It is possible that the un-

canny valley might lead to people being less willing to engage in interaction.

However, we believe that more effort should be put into interaction design

rather than physical-appearance design, since the relationship between the

former and the uncanny valley needs further empirical research.

1.1.5 Overcoming the problems of anthropomorphic technology

Even if we accept the uncanny valley as it was proposed by Mori, there are

certain reasons why the consequences for acceptance of humanlike robots

are not as profound as the theory indicated. In non-laboratory conditions

people rarely reported an eerie feeling when interacting with a geminoid [27].

Furthermore, at least for computer graphics, there are guidelines regarding

the creation of humanlike heads that can reduce the unnaturalness of agents’

faces [142]. People find robots’ performance much more important than their

appearance [100], which further emphasizes that whether a robot performs

its task correctly is of greater importance than how it looks.

Facilitating positive attitudes toward eerie machines

If the uncanny valley has a lasting effect on HRI, it is beneficial to con-

sider how the acceptance of eerie machines could be facilitated. Previous

work in HRI shows that people can perceive robots as either ingroup or

outgroup members [76] and even apply racial prejudice towards them [79].

Therefore, the theoretical foundations for the integration of highly human-

like robots could build on the extensive research examining how to facilitate

positive intergroup relations between humans belonging to differing national-

ities, ethnicities, sexual, or religious groups. The topic of intergroup relations

has been heavily investigated by social psychologists worldwide since World

War II. While some of this early work was interested in understanding psy-

chological factors that led to the events of the Holocaust, Gordon Allport’s

seminal work on the nature of prejudice [6] provided the field with a larger

platform to examine the basic psychological factors underlying stereotyping,

prejudice, and discrimination.

From several decades of research on the topic, the field has not only shed
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light on the varied ways in which intergroup bias manifests itself in everyday

life [57, 98], but it also helps us better understand the economic, motiva-

tional, cognitive, evolutionary, and ideological factors that drive intergroup

bias and conflict between social groups [112]. In addition, the field has also

identified several social psychological approaches and strategies that can be

used to reduce prejudice, stereotyping, and discrimination toward outgroups

(i.e. groups to which we do not belong). These strategies range from in-

terventions that promote positive feelings and behaviour toward outgroups

through media messages [157, 221, 63], recategorization of outgroups into a

common superordinate group [63, 64], valuing diversity and what each sub-

group can contribute to the greater good [208, 224, 210], promoting positive

contact with members of the outgroup [160, 63, 161], among others.

In the context of HRI, these social psychological strategies may be used

to promote positive HRI and favorable social attitudes toward robots. For

example, from over fifty years of empirical research on intergroup contact,

there is strong empirical evidence that positive contact with an outgroup

can reduce prejudice or negative feelings toward the outgroup [160, 161].

Such positive contact between two groups has been shown to be particularly

beneficial when four conditions are met: (a) within a given situation, the per-

ceived status of the two groups must be equal; (b) they must have common

goals; (c) cooperation between the two groups must occur; and (d) positive

contact between groups must be perceived as sanctioned by authority. Such

intergroup contact may reduce outgroup prejudice for many different reasons

[160, 161], one reason being that positive contact allows one to learn more

about the outgroup. In the context of HRI, one may, therefore, expect that

negative attitudes towards humanlike robots may stem from their perceived

unfamiliarity and unpredictability. Although they look humanlike, people

cannot be sure whether machines will behave like a human being. Increased

familiarity with such technology might thereby lead to decreased uncertainty

regarding its actions and in turn reduce negative feelings toward them. Em-

pirical research is needed in order to establish whether intergroup contact

can facilitate greater acceptance of anthropomorphic robots. More broadly,

such social psychological research may offer insight into understanding when

and why people may feel unfavorably toward robots, while offering practical
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strategies that can be considered in HRI as a means to promote greater social

acceptance of robots in our increasingly technological world.

Limiting the risks associated with anthropomorphic technology

Of the criticism that anthropomorphic robots (in fiction at least) encourage

the general public to think that AI has progressed further than in actuality,

we can simply say that this may underestimate the public’s good sense. The

objection, against those researchers aiming to build a child-machine, that

humanlike AI is a mistaken and unproductive goal can also be answered.

For example, the real target of this complaint may be, not human-level or

humanlike AI as such, but rather symbolic AI as a means of attaining human-

level AI (see [166]). Behaviour-based approaches may escape this complaint.

Moreover, the assumption that there is such a thing as generic intelligence,

and this is the proper subject of study for researchers in computational intel-

ligence, begs an important question. Perhaps our concept of intelligence just

is drawn from the paradigm examples of thinking things—human beings.

This leaves the forensic problem of anthropomorphism. In general, AI

requires a distinction between a mere machine and a thinking machine, and

this distinction must be proof against the human tendency to anthropomor-

phize. This is exactly what Turing’s imitation game provides (see [166, 168]).

The game disincentivizes anthropomorphism: an observer (i.e. interrogator)

who anthropomorphizes a contestant increases the chances of making the

embarrassing mistake of misidentifying a computer as a human being. The

behaviour of interrogators (in early Loebner Prize Contests where a series of

machine and human contestants were interviewed individually) shows that

observers go out of their way to avoid this awkward error, to the extent that

they misidentify human beings as computers. In addition, the imitation game

controls for the effect of the tendency to anthropomorphize; in simultaneous

interviews with a machine and a human contestant, an observer’s propensity

to anthropomorphize (which we can assume to be present equally in both

interviews) cannot advantage one contestant over the other. Turing’s test is

proofed against the human tendency to anthropomorphize machines.

But how is anthropomorphism-proofing to be applied to judgements of

20



intelligence or affect in anthropomorphic robots? Much of the engineer-

ing of these robots is to make them visibly indistinguishable from a human

being. An open imitation game where both contestants—a hyper-realistic

humanlike robot and an actual human being—are seen by the interrogator

would provide a disincentive to anthropomorphizing and a control on the

tendency to anthropomorphize. However, interrogators in this game might

well focus on characteristics of the contestants that Turing labeled ‘irrele-

vant’ disabilities—qualities immaterial to the question whether a machine

can think, such as a failure ‘to shine in beauty competitions’ [202, p. 442].

An interrogator might, for example, concentrate on the functioning of a con-

testant’s facial muscles or the appearance of the skin. This open game,

although anthropomorphism-proofed, would fail as a test of intelligence or

affect in machines. On the other hand, in the standard game where both the

robot and the human contestants are hidden, much of the robot’s engineering

would now be irrelevant to its success or failure in the game—for example,

David Hanson’s robot Einstein’s ‘eyebrows’ [154] surely do not contribute

to a capacity for cognition or affect. This is why Turing said that there is

‘little point in trying to make a “thinking machine” more human by dress-

ing it up in ... artificial flesh’ [202, p. 442] and hoped that ‘no great efforts

will be put into making machines with the most distinctively human, but

non-intellectual characteristics such as the shape of the human body’ [206,

p. 486].

In sum, AI requires some means of anthropomorphism-proofing judge-

ments of intelligence or affect in anthropomorphic robots—otherwise it lacks

a distinction between justified and unjustified anthropomorphizing. An open

Turing test will test for the wrong things. A standard Turing test will suffice,

but seems to be inconsistent with the growing trend for hyper-realistic and

eerie robots.

1.1.6 Conclusion

In this section we have discussed the widespread tendency for people to

anthropomorphize their surroundings and in particular how this affects HRI.

Our understanding of its impact on HRI is still in its infancy. However,
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there is no doubt that it creates new opportunities and poses problems that

can have profound consequences for the field of HRI and acceptance of the

robotic technology.

Anthropomorphism is not only limited to the appearance of a robot, but

the design of a robotic platform must also consider a robot’s interaction

with humans as an important factor. Accordance between these factors is

necessary for a robot to maintain its humanlike impression. A well designed

system can facilitate interaction, but it must match the specific task given

to a robot. For people it is more important that a robot can do its job

accurately rather than how it looks. However, we have presented multiple

examples where humanlike form in appearance and behavior can help a robot

to perform its tasks successfully by eliciting desired behaviours from human

interaction partners.

On the other hand, development of anthropomorphic robots comes at

certain costs. People expect them to adhere to human norms and have

much higher expectations regarding their capabilities compared to robots

with machine-like appearance. The uncanny valley hypothesis suggests that

there is repulsion toward highly humanlike machines that are still distin-

guishable from humans. However, in this section we have shown the main

shortcoming of the previous work that might hamper the suitability of this

hypothesis in HRI. Future research should investigate this phenomenon in

real HRI rather than by using images or videos. Moreover, work on the op-

posite process, dehumanization, can help us to understand the relationship

between acceptance and anthropomorphism better. In addition, in order to

facilitate the integration of humanlike robots we propose to employ strategies

from the area of intergroup relations that are being used to facilitate positive

relations between human subgroups.

We have also shown that the phenomenon of anthropomorphic robots

generates challenging philosophical and psychological questions. In order for

the field of AI to progress further it is necessary to acknowledge them. These

challenges can not only affect how the general public perceives current and

future directions of research and anthropomorphic and intelligent systems,

but also might determine how far the field can go. It remains to be seen

whether the field can successfully address these problems.

22



1.2 Aims

The literature review indicates that there are numerous ways in which anthro-

pomorphism can be manipulated. However, there is a gap in our knowledge

in understanding what attributes are key in that process. There is a need

for a model of anthropomorphism that could put together the up to date

findings, as well as indicate what other unexplored characteristics should be

investigated in future research. Such a model would enable interaction de-

signers of robotic systems to change a robot’s attributes, mainly behaviour,

on the fly so that they fit current task. There is no specific level of anthro-

pomorphism that is the most suitable for all tasks, but rather it should be

adjusted in order to optimize a robot’s performance in a specific context.

The currently available models of anthropomorphism (presented in detail

in Chapter 2) provide an indication that the context of interaction as well as

the perceiver can play an important role in that process. The research shows

that embodiment plays an important role in anthropomorphism of robots.

However, currently it is very difficult for a robot to anatomically change its

physical appearance during the course of an interaction with a human. While

in the future the development of technology might enable it, currently the

robots’ physical appearance is static and interaction designers should focus

on other characteristics affecting the interaction. Since their embodiment

could be a moderating factor affecting how other attributes are perceived,

providing a model of anthropomorphism for a specific embodiment would

have a very limited benefit for the HRI community. Therefore, the goal of

this PhD dissertation is to investigate the factors affecting anthropomorphism

and the ways of measuring them. In order to achieve that goal the following

aims should be met:

1. Explore what is anthropomorphism.

2. Propose or develop a suitable tool for measuring anthropomorphism in

HRI.

3. Investigate the process involved in anthropomorphism.

4. Investigate the factors that affect anthropomorphism of a robot.
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5. Investigate the applicability of the model of dehumanization as a new

model of anthropomorphism for HRI.
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Chapter II

Models of anthropomorphism

2.1 Existing models

In the recent years several models of anthropomorphism and humanlikeness

were proposed: three-factor theory of anthropomorphism [69], appearance

and behaviour parameter based model of humanlikeness [209] and dynamic-

cognitive model [136]. In this subsection I will discuss these models in more

detail.

A general model of anthropomorphism as a common psychological phe-

nomenon was proposed by Epley and colleagues [69]. Their three-factor

theory of anthropomorphism proposed psychological factors that affect how

people anthropomorphize non-human agents:

1. Elicited agent knowledge—due to people’s much richer knowledge re-

garding humans compared with non-human agents, people are more

likely to use anthropomorphic explanations of non-human agents’ ac-

tions until they create an adequate mental model of non-humans.

2. Effectance motivation—when people are motivated to explain or un-

derstand an agent’s behaviour the tendency to anthropomorphism in-

creases.

3. Sociality motivation—people who lack social connection with other hu-

mans often compensate for this by treating non-human agents as if they

were humanlike [67].

This general theory has been also successfully applied in the context of

HRI [74, 131, 182]. However, only the elicited agent knowledge is a factor

that is directly applicable to robots design.
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Elicited agent knowledge can be induced as a result of a robot’s human-

likeness. The second model, proposed by von Zitzewitz et al. [209], tries

to break down a robot’s appearance and behaviour into smaller and mea-

surable factors. The authors propose that there are five static aspects of

appearance: visual appearance, sound, smell, haptic appearance and taste.

Moreover, there are five dynamic aspects of behaviour: movement, nonverbal

communication, interactive behaviour, verbal communication and social be-

haviour. Each of these aspects is further parametrized to measurable units.

In this model the authors also propose that initially appearance is a more

important factor of humanlikeness, but with increased social interaction be-

havioral factors take the crucial role. The major strength of this model is

its quantification of factors that are relevant for a robot’s perceived human-

likeness. However, it is focused on investigating the impact of these factors

separately from each other while in real-life situations the behaviour of a

robot is perceived holistically without analysing different aspects indepen-

dently. Moreover, the model assumes that there is a fixed level of parameters

that is the most humanlike in all situations. However, human beings adjust

their behaviour depending on the situation, e.g. people move slower when

they are around fragile items compared to being in open space. Therefore,

in order to apply this model in practice would require prior measurement of

the factors and parameters for every human-robot interaction.

The third model discusses the cognitive correlates of anthropomorphism

[136]. This newly proposed model emphasizes that anthropomorphism of a

robot is not constant, but can change during interaction. Furthermore, it in-

dicates that anthropomorphism can have human, robot and context origins.

However, as the authors noted themselves, at the current time the link with

the cognitive processes is rather weak. Moreover, according to this model,

initial anthropomorphism of a robot always raises sharply in the initial stages

of interaction and then slowly drops, a claim that is not supported by the

empirical data. In addition, similarly to the three-factor theory of anthro-

pomorphism, this model does not provide any information on what factors

make robots more anthropomorphic and therefore its applicability for the

robotic system designers is limited. Nevertheless, this is a promising theory

that requires empirical work in order to validate this model.
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2.2 Dehumanization

Compared with the above discussed models, the model proposed in this

thesis took humanness as a core component of anthropomorphism and in-

stead of looking at what makes objects more anthropomorphic, it is based

on work that investigates what makes humans less human. The theoretical

relationship between dehumanization and anthropomorphism was suggested

by Waytz et al. [217]. The process of dehumanization - “a failure to attribute

basic human qualities to others” [216] - only recently became a focus of in-

terest in the field of social psychology. A key finding that sparred interest in

this topic is a publication of [138] in which they showed that people attribute

differently certain emotions to ingroup and outgroup members. They have

proposed that people attribute essences differently to the ingroup and out-

group members. The underlying essence of the ingroup is the human nature.

Therefore, they argued that by attributing different essences to ingroups and

outgroups people perceive the former to possess some human characteris-

tics that the latter lacks. They found that across different languages people

distinguish between sentiments and emotions. The sentiments were uniquely

human, while emotions were common to humans and animals. They mapped

these terms on primary and secondary emotions, where secondary emotions

constitute what is uniquely human.

Ekman [66] suggested that one of the characteristics that distinguishes

these two categories of emotions are that primary emotions are present in

other species. Furthermore, primary emotions appear early in life [119],

while secondary emotions appear later and are a result of socialization [126].

According to their hypothesis [138] found that participants attributed less

secondary emotions to outgroup members than ingroup members. A series

of following studies shows that people implicitly stronger attribute secondary

emotions to ingroup and primary to outgroup members, whether the emo-

tions are positive or negative [156]. They also implied that the restriction

of attribution of human nature characteristics to ingroups leads to infrahu-

manization of outgroups. Moreover, in the memory-recall task subjects re-

membered better association between the outgroup and secondary emotions

than the ingroup and secondary emotions, while no differences were found for
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primary emotions [89]. Furthermore, people who are ostracized judge them-

selves and those who ostracized them as less human, and believe that they

are perceived as less human by them on the basis of attribution of secondary

emotions [26].

Haslam [102] proposed a model of dehumanization that involves two dis-

tinct senses of humanness: characteristics that are uniquely human and those

which form human nature. Since these characteristics are perceived by peo-

ple as distinguishing them from animals and automata, denying the former

attributes leads to perception of humans as animal-like, while denying the

latter makes them object or automata like. Uniquely human (HU) character-

istics, such as intelligence or intentionality, are what separates humans from

animals. On the other hand, features that are typical of or central to humans

are referred to as human nature (HN) characteristics, such as primary emo-

tions or warmth. Therefore, characteristics that form the core of humanness

may not be the same as those which distinguish us from other species.

There are several aspects that differentiate these two senses of humanness:

1. HU characteristics reflect socialization and culture, while HN charac-

teristics link humans to their inborn biological dispositions.

2. HU characteristics reflect social learning and can vary across cultures

and populations. HN is prevalent within populations and universal

across different cultures.

3. HN is essential, inherent and natural, while HU may not be perceived

as essential.

4. HU involves refinement, civility, morality, and higher cognition. HN

involves cognitive flexibility, emotionality, vital agency, and warmth.

Moreover, different personality traits are attributed to different forms of

humanness. High HU traits were related to low Neuroticism and Extraver-

sion, and positive and negative poles of Agreeableness, Conscientiousness and

Openess to Experience [102]. On the other hand, HN was related to high

Agreeableness, Conscientiousness, Extraversion and Openess to Experience,
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and low Neuroticism. Therefore, affective traits are central to HN, while

cognitive sophistication to HU.

Further, Haslam [102] stated that those who are deprived HU charac-

teristics will be perceived as coarse, uncultured, unintelligent and driven by

motives and instincts. However, those deprived of HN will be perceived as

lacking in emotionality, warmth, cognitive openness and individual agency.

There are also different consequences of depriving humans HU and HN

characteristics [102]:

1. A person deprived of HU traits is perceived as disgusting, while lack of

HN traits implies indifference in perceiver and lack of empathy.

2. Lack of HU characteristics leads to perception of a person as subhuman

and lack of HN as nonhuman.

3. Deprivation of HN affects intergroup and HU applies to intergroup and

interpersonal contexts [104].

An important notion is that dehumanization does not only occur in ex-

treme situations, but is rather common in its milder forms in our everyday

social life [102]. Some social groups are implicitly and explicitly attributed

less HU characteristics (e.g artists) and therefore likened to animals, while

other (e.g. businesspeople) are attributed less HN characteristics and likened

to automata [140]. Furthermore, HU traits are associated stronger with au-

tomata than with animals, but HN has stronger association with animals

than with automata. In another study Haslam et al. [106] found that ani-

mals compared to humans were perceived as lacking higher cognitive powers

and secondary emotions, but they were also seen as having better perceptual

capacities. Robots lacked emotions and desire related capacities, and super-

natural beings had superior cognitive and perceptual capacities than humans.

The results are consistent with previous findings suggesting that there are 2

dimensions of humanness. Furthermore, they imply that superhumans differ

from humans on the same dimension as robots and being perceived more

positively than other humans is also a form of dehumanization.

Another approach was taken by Gray et al. [95]. For them having mind is

what distinguishes humans. They measured eighteen mental capacities and
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six personal judgments regarding various human and nonhuman agents and

found that the mind perception was explained by two factors: Agency and

Experience. Characteristics that formed Agency dimension are: abilities to

have self-control, morality, memory, emotion recognition, planning, commu-

nication, and thought. Those which form Experience are: the abilities to feel

hunger, fear, pain, pleasure, rage, and desire; to have personality and con-

sciousness; and to feel pride, embarrassment, and joy. Furthermore, agency

is linked to moral agency, which leads to perception of agents responsibility.

On the other hand, experience is linked with moral patiency and that gives

an agent rights and privileges. Indeed, as proposed in the moral typecasting

model people are either perceived as moral agents (those who can do good

or bad actions) or moral patients (those who can be a target of good and

bad actions) [96]. Moral agents are perceived as being less vulnerable to

having good and bad done to them, while moral patients are perceived as

less capable of performing good and bad actions.

Interestingly, the dimensions of mind perception [95] map well on those

proposed by Haslam [102] for humanness [105]. Agency dimension corre-

sponds to Human Uniqueness and Experience to Human Nature. The ob-

jectification of women and men was found to lead to their depersonalization

due to the deprivation of mind [141]. Moreover, [105] proposed that attribu-

tion of HU traits leads to greater inhibitive agency (responsibility for doing

wrong). On the other hand, higher Human Nature lead to greater moral

patiency (having rights for being protected from harm) and proactive agency

(being praised for doing right). The important conclusion from this finding

is that depending on a way in which a robot is anthropomorphized it can

be attributed differently moral responsibility and rights for protection. On

a legal level understanding the analogy between different groups of humans

(e.g. slaves or children) or animals and robots can have implications on what

rights will be given to robots in the future [46].

Furthermore, the speed of movement is used by humans to infer the pres-

ence of mind and attribute mental attributes, such as intention or intelligence,

to objects, animals and people [145]. Targets that move slower or faster from

humans are more likely to be perceived as lacking mental capabilities and the

speed used as a reference can be dependent on a group to which perceiver
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belongs (e.g. elderly or child).

Understanding how dehumanization affects perception of humanness can

give a new perspective on the process of anthropomorphization in HRI. It

provides an indication on what characteristics may affect a user’s perception

of the degree to which a robot is anthropomorphized, and tools and methods

used to measure dehumanization can be used in HRI for measuring anthropo-

morphism. The work on dehumanization recently started receiving attention

in the context of HRI. However, these studies used dehumanization mainly as

a measurement tool of anthropomorphism of robots e.g. [74, 131, 182]. The

previous work on anthropomorphism in HRI considered this phenomenon as

a uni-dimensional space from a machine to a human. However, since human-

ness is the essence of anthropomorphism, the studies of dehumanization can

indicate that anthropomorphism can be at least two-dimensional (an excep-

tion is [75] where anthropomorphism of a robot was measured on two scales

of humanness, but they were not considered as different dimensions of that

construct). Therefore, in order to accurately represent the extent to which

a robot is anthropomorphized it would be necessary to measure it on these

two dimensions.

2.3 Dual-process

Anthropomorphism has been measured using various measurement tools,

such as questionnaires [22], physiological measures [132] or social behaviour

[25]. In addition, previous studies indicate that people’s anthropomorphic

conceptualizations of robots can differ on different levels of abstraction. Peo-

ple are more willing to exhibit anthropomorphic responses when freely de-

scribing a robot’s behaviour in a specific context or attributing properties

to the robot performing these actions, but not properties that characterize

robots in general [88]. However, the difference in anthropomorphizing robots

could be expressed not only on different levels of abstraction, but also on

different levels of measurement, i.e. explicit vs implicit. Not only the results

could be inconsistent between these different measurement levels, but also

there could be different processes or systems responsible for that difference.

Many cognitive and social psychological judgements and attributions are a
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result of two processes broadly described as intuitive and deliberative/reflective

[55]. The key distinction between them is their use of working memory

[72]. Type I process (intuitive) is autonomous and does not require working

memory. Its typical correlates are being fast, with high capacity, processing

occurring in parallel, unconsciously, and leading to biased and automatic re-

sponses. On the other hand, Type II process (reflective) involves cognitive

decoupling and requires working memory. Its typical correlates are being

slow, with limited capacity, processing occurring in serial, consciously, and

leading to controlled and normative responses.

There is no agreement whether Type I and II processing proceed in

parallel-competitive form, where each of them can affect the judgement and

conflict will be resolved if needed [193], or in default interventionist form,

where Type I processing generates initial response and Type II processing

may or may not modify it [72]. In addition, there are individual differences

in rational thinking dispositions that affect Type II processing, but few indi-

vidual differences in Type I processing [72]. It has been also proposed that

there could be multiple different implicit cognitive Type I processes [71].

There are three major sources of evidence supporting the existence of

Type I and Type II processing: experimental manipulations (providing in-

structions that are supposed to increase motivation for Type II processing

effort or suppress it by using a concurrent task that limits capacity of work-

ing memory), neural imaging and psychometric approach showing that Type

II, but not Type I processing has relation with cognitive ability [72].

Some researchers propose that anthropomorphism is a conscious (Type

II) process [218]. However, currently there is no empirical evidence support-

ing this claim. Since anthropomorphism has cognitive and social correlates

it is possible that a dual process is involved in formulation of a judgement

of a robot. The initial interpretation of a vague object as a human that has

evolutionary origins [13], could be a result of Type I processing. However,

when people are motivated to provide accurate judgement and Type II pro-

cessing will be activated, it is possible that they will not necessarily attribute

human characteristics to these objects.
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Table 2.1: Preliminary model of anthropomorphism for HRI. A list of factors grouped by
dimension of humanness based on work on dehumanization.

Human Uniqueness Human Nature
Intelligence Primary emotions
Intentions Warmth

Secondary emotions Sociability
Self-control

Memory
Communication capabilities

2.4 Integrative model

Based on the literature review presented in the previous two sections a new

model of anthropomorphism is proposed. The novel contribution of this

new model is in reversing the model of dehumanization and proposing that

the same characteristics which dehumanized people are deprived of could be

used to increase anthropomorphism of a robot. Since work on dehuman-

ization presents two dimensions of humanness, the new model of anthropo-

morphism for HRI also proposes that there could be multiple dimensions of

anthropomorphism. Table 2.1 presents the list of factors proposed to affect

anthropomorphism of a robot grouped by dimensions of humanness (based

on [102]).

In order to understand better anthropomorphism and how it affects HRI,

it is also important to understand the process itself. Therefore, the proposed

model of anthropomorphism suggests that anthropomorphism, similarly to

many other social processes, could be a result of both Type I and Type II

processing.

2.5 Research questions

Based on the above discussed literature and the proposed model of anthro-

pomorphism for HRI, the following general research questions are addressed

in this dissertation:

1. How to measure anthropomorphism?
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2. Can we measure anthropomorphism explicitly and implicitly?

3. Is anthropomorphism a result of Type I or Type II processing?

4. Is anthropomorphism an opposite process to dehumanization?

5. Can factors which people deprive dehumanized others be used to affect

anthropomorphism of a robot?

6. Are there multiple dimensions of anthropomorphism?

7. Is psychological anthropomorphism and physical humanlikeness of a

robot the same?

In the following five chapters, experimental studies are presented that

addressed one or more of these questions. Finally, in the last chapter, con-

clusions based on these five studies are discussed and directions for future

work suggested.
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Chapter III

Development of a cognitive measure of

anthropomorphism

In human-human interaction people form an impression of others within

the first seconds to minutes time frame [28]. Moreover, the first impression

can have lasting consequences in HRI as well [22, 163]. However, there are

also studies that indicate early conceptions can change during the course of

an interaction. After interacting with a robot people tended to anthropo-

morphize it more [88]. This change in user’s perception of a robot has been

shown in infant-robot interaction [162]. Furthermore, people tend to judge a

robot’s physical appearance and its capabilities in relation to its role [195].

Nevertheless, embodiment plays an important role in anthropomorphiza-

tion, especially in the phase before the actual interaction is initiated. Hence,

it is not surprising that in the recent years extensive research has been con-

ducted with an aim to better understanding the impact that embodiment

has on people’s behavior whilst interacting with robots.

Fischer et al. [83] showed that physical embodiment and degrees of free-

dom affect HRI. The former has influence on how deeply a robot is perceived

as an interaction partner, whilst the latter has an impact on how users project

suitability of a robot for its current task. Moreover, a user’s personality can

impact on preferences regarding a robot’s physical appearance [197]. Other

factors, such as crowdedness can have influence on what type of a robot’s

physical appearance will lead to a longer interaction [92]. Furthermore, Hegel

and colleagues [110] found that the increase of humanlikeness of a robot’s

embodiment leads to attribution of higher intelligence and different cortical

activity.

Since the role of embodiment is rather complex and still not well under-
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stood, there is no doubt that it will remain one of the research focus areas in

forthcoming years. Embodiment also emphasizes the importance of choosing

an appropriate physical appearance for social robots that will enter human

spaces. Therefore, it is necessary that robotic system designers are able to

assess the level of anthropomorphism of various embodiments. Question-

naires are among the most popular measurement tools used in HRI research,

e.g. [22]. However, there are some attempts to develop alternative methods.

Kriz et al. [130] used robot-directed language as a tool for exploring peo-

ple’s implicit beliefs toward robots. Moreover, Admoni and Scassellati [3]

proposed that an understanding of mental models of robots’ intentionality

can guide the design process of robots. In addition, Ethnomethodology and

Conversation Analysis shed more light on our understanding of HRI [162].

Bae and Kim [11] took a different approach. They were interested to

see whether visual cognition allots more attention to robots with animate or

inanimate forms. In order to answer their question, they conducted a change

detection experiment in which participants briefly saw two images involving

a robot and were asked to decide whether the images were identical or not.

The allocation of visual attention to the changes perceived is responsible for

the change detection in the paradigm [116]. They found that the participants

detected changes swifter in animate rather than inanimate robots.

In this chapter we will present an attempt for developing a new mea-

surement tool with similar approach to [11]. We used images of robots and

explored their relation with visual cognition in an attempt to validate a new

method for measuring robots humanlikeness based on their physical appear-

ance. However, compared with [11], we have utilized a different paradigm,

known as the inversion effect.

3.1 Inversion effect

The inversion effect is a phenomenon when upside down stimuli are signifi-

cantly more difficult to recognize than upright stimuli [223, 143]. It has been

originally reported for the recognition of human faces [223] and explained

as a result of different processing used for different types of stimuli [143].

Configural processing, used for identification of human faces, involves the
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perception of spatial relations among the features of a face (e.g. eyes are

always in certain configuration with a nose). On the other hand, during the

recognition of objects, the spatial relations are not taken into account and

this type of processing is called analytic [174].

While most of the objects are recognized by the presence or absence of

individual parts, the recognition of human faces involves configural process-

ing, which requires specific spatial relations between face parts [47, 53, 134].

Furthermore, human body postures produce similar inversion effects as what

human faces do [173] and therefore, a different processing mechanism is in-

volved in the recognition of human body postures compared to inanimate

objects [174]. Moreover, configural human body posture recognition requires

whole body rather than merely body parts with the posture physically pos-

sible [174].

Although, in general the inversion effect occurs only for human body

and faces, it has been shown that people who become experts in certain

categorization of objects (e.g. a specific breed of dogs) can recognize them

using configural processing and exhibit a similar handicap of performance due

to the inversion effect as shown for human faces [198]. Diamond and Carey

[59] suggested that there are three conditions necessary for the inversion

effect to occur:

• The members of the class must share configuration

• Distinctive configural relations among the elements must enable indi-

viduating members of the class

• Subjects must have expertise in order to exploit such features

In relation to robots, Hirai and Hiraki [113] conducted a study that in-

vestigated whether the appearance information of walking actions affects the

inversion effect. The event-related potential (ERP) indicated that the inver-

sion effect occurred only for animations of humans. Thus, a robotic walking

animation was processed differently than a human body.

Recently studies suggested that under certain conditions the human body

can be perceived analytically rather than configurally. In other words, it is
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possible for a human body not to induce the inversion effect and therefore be

processed like an object. Bernard et al. [32] showed that due to the objectifi-

cation of sexualised women’s bodies, their recognition is not handicapped by

the inversion effect. However, sexualised men’s bodies exhibit the inversion

effect like non-sexualised body postures. The gender of participants did not

play a role in this phenomenon. Gervais [90] found that women’s bodies were

reduced to their sexual body parts and that led to the perception of them

on the cognitive level as objects.

These findings show that non-sexualized human body postures and faces

are perceived differently than other objects. Furthermore, humans are able

to objectify other human bodies. In this chapter we explore whether they are

also able to perceive robots’ appearance like human body posture since robots

can share certain physical characteristics of human bodies. Due to practical

concerns, we have used images of robots rather than real robots on which we

elaborate more in the Limitations and future work section. First, we tested

whether robots elicit the inversion effect. If their recognition is handicapped

in the upside down position compared to the upright, it would suggest that

they are processed configurally and therefore are viewed more like humans.

Alternatively, if there be no significant decrease of recognition, this would

mean that they are seen as objects. Second, we attempted to validate the

magnitude of the inversion effect as a method for measuring humanlikeness.

If there is a relationship between the handicap due to the inversion effect

and a robot’s perceived humanlikeness, it will be possible to estimate the

humanlikeness of a robot’s embodiment by measuring the magnitude of the

inversion effect. Such an assessment tool could support robotic system de-

signers in their choice of different embodiments for a platform which provides

additional information about the level of humanlikeness.

3.2 Method

This experiment was conducted as a within-subjects design with two factors:

image type (object vs robot vs human) and orientation (upright vs upside

down). The recognition accuracy (whether an image is recognized correctly

as same or different) and reaction time were measured for each pair of im-
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ages as dependent variables. Furthermore, the Godspeed Anthropomorphism

Scale [22] was used for each image in order to measure its perceived level of

humanlikeness.

3.2.1 Measurements

The whole experiment was programmed and conducted using E-Prime 2 Pro-

fessional Edition [117]. We have measured the correctness of participants’

responses and their reaction times to the millisecond precision level. To

measure the perceived humanlikeness of stimuli we have used a slightly mod-

ified version of the questionnaire based Godspeed Anthropomorphism Scale

[22] (Appendix A). Since the original questionnaire included a subscale that

cannot be measured with static stimuli (Moving rigidly - Moving elegantly),

we removed it. The remaining 4 semantic differential scales were used in

their original English version.

3.2.2 Materials and apparatus

The robot stimuli were created in the following way. We selected pictures

of real robots and on each picture there is only one robot. We opted for

images depicting full bodies of robots rather than their faces as we wanted

to include the full range of robots embodiments and merely due to having a

face, a robot is humanlike to some degree. Although the context provided by

the background can play a role in a robot’s anthropomorphizability, it would

be a confounding variable in the presented study to indicate which images

were rotated. Therefore, following the procedure of previous experiments on

the inversion effect, we coloured the background and shadows in the images

completely white. Furthermore, if there were some letters or numbers present

on a robot, they were removed as well as they could have provided additional

hints for recognizing images. We have used a wide spectrum of existing, non-

fictional and non-industrial robots, ranging from Roomba and Roboscooper

to more humanlike ASIMO and Geminoids. There were in total 33 different

robots that varied in shape and structure of their bodies (see Figure 3.1).

To be able to measure the correctness of the response, we had to create

distractors, so that the participants were able to choose between a correct and
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Figure 3.1: Sample of 6 images of robots with different embodiments used in the study.

an incorrect response. Distractors were created by mirroring each robot, as

proposed by [32]. This method was chosen as it ensured that the modification

is comparable between different robots as well as different types of stimuli.

The robots were centered on the image and they were in poses that are

horizontally and vertically asymmetric. In other words, the right half of

an image differed from the left, and the top half differed from the bottom.

Therefore, they were distinguishable from their distractors. We have created

pairs of images by putting together the original image with its exact copy

and another pair that included the original image and its distractor (mirrored

image). Therefore, there were 33 same-robot and 33 different-robot pairs.

Finally, all robot pairs were rotated 180◦ to create the upside down robot

stimuli. All possible combinations of image pairs (trials) can be seen in

Figure 3.2.

Exactly the same procedure was used in order to create human body and

object stimuli. Thirty-three pictures of real people were included so that

the number of pairs were the same as for the robots. Since these were real

pictures, all body postures were natural and physically possible. We used im-

ages of full men and women bodies and they were presented in a non-sexual

way (their bodies were covered by clothes) to ensure that sexual objectifica-
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Figure 3.2: Image pairs used for a single image of a robot. A: Example of the same trial
in the upright condition - original image paired with its copy. B: Example of the different
trial in the upright condition - original image paired with its distractor. C: Example of a
same trial in the upside down condition - original image rotated 180◦ paired with its copy.
D: Example of a different trial in the upside down condition - original image rotated 180◦

paired with its distractor.

tion will not affect the results [32]. The objects category included pictures of

various types of home appliance, such as dishwasher, TV or telephone. The

number of object pairs were exactly the same as for the two other categories

of stimuli.

3.2.3 Procedure

Each participant was seated approximately 0.5 m from a 21.5” Macintosh

computer monitor with Windows XP operating system. The resolution was

set to 1920x1080 pixels. Each participant was allowed to adjust the height

of the chair so that his eyes were at the same level as the center of the

screen. Participants were informed that the experiment consists of 2 parts.

In the first part, their task is to decide whether a pair of images was exactly

identical. In the second, they have to fill in the humanlikeness questionnaire.

Before the actual experiment began, participants had a practice round

to familiarise with the procedure. It included in total 11 stimuli pairs of

different types and orientation. The procedure to evaluate each stimulus in

the practise round was identical to the procedure in the actual experiment
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for all other stimuli. Participants were shown the plus sign that indicated

the fixation point in the center of the screen for 1000 ms, followed by the

original stimulus for 250 ms and then a blank screen for 1000 ms. It was

followed by a second stimulus that was either a copy or distractor of the first

stimulus and remained on the screen until a participant responded. All im-

ages had 1024x768 pixels resolution. There was no mental rotation required

as they were both displayed either in upright or upside down orientation.

Participants pressed either the S key to indicate that the stimuli were abso-

lutely identical or the L key if they were different. Participants were asked

to respond as fast and as accurately as possible.

Upon completion of the practice round an actual experiment began, fol-

lowing exactly the same procedure as described above for the practice round.

Stimuli were presented in 3 different blocks according to their type (object,

robot, human), the order of blocks counterbalanced, and ordering of stimuli

pairs randomized within each block across participants. Each of the blocks

including 132 trials, which gave a total of 396 trials.

Upon completion of the first part, participants were asked to rate each

stimulus used in the experiment on 4 subscales of the Godspeed Anthropo-

morphism Questionnaire. All types of stimuli were included and their order

randomized. The entire experiment took approximately 40 minutes.

3.2.4 Participants

Fifty-one subjects were recruited at the University of Canterbury. They were

offered a $10 voucher for their participation. Due to software failure, the data

of 4 participants was lost. Out of the remaining 47 participants, 15 were

female. There were 23 postgraduate students, 16 undergraduate students,

4 university staff members and 4 participants whom did not qualify under

any of these 3 categories. Their age ranged from 18 to 58 years with a mean

age of 26.26 years. They were from 24 different countries, with New Zealand

(15) and China (4) being the most represented. Forty participants never

interacted with a robot or did it less than 10 times. Therefore, we regard

them as non-experts in robotics. Only one participant indicated that he had

over 100 interactions.

42



3.3 Results

3.3.1 Perceived humanlikenes

Since we slightly modified the Godspeed Anthropomorphism scale it was

necessary to ensure that it is still reliable. The internal consistency of the

humanlikeness scale was very good, with a Cronbach’s alpha coefficient of

0.96. The reliability of the Godspeed questionnaire with the included 4 sub-

scales is well above the acceptable 0.7 level [150] and therefore the removal

of one subscale should not affect the humanlikeness score.

As the scale was regarded reliable, we have obtained the score of human-

likeness for each image by calculating the mean of 4 subscales. Then, using

these scores, we have calculated the score of humanlikeness for each stim-

uli type (object, robot, person) by taking the mean of scores for all stimuli

that belonged to that type. In order to establish whether a type of image

affects its perceived humanlikeness, we have conducted a one way repeated

measures analysis of variance (ANOVA). We have applied the Huynh-Feldt

correction, as Mauchly’s test indicated that the assumption of sphericity was

violated (W=0.81, p=0.01). The analysis showed that there was significant

effect for image type [F(1.76,80.74)=623.3, p<0.001, η2G=0.91]. We report

here the generalized eta squared to indicate the effect size. It is superior to

eta squared and partial eta squared in repeated measure designs, because of

its comparability across studies with different designs [12]. Post-hoc com-

parisons using Bonferroni correction for the family wise error rate indicated

perceived humanlikeness was significantly different between groups at the

level of p<0.001 (object, M=1.32, σ=0.51; robot, M=1.83, σ=0.51; person,

M=4.67, σ=0.42) (see Figure 3.3).

3.3.2 Inversion effect

To test the hypothesis that robots, similarly to human body postures, pro-

duce an inversion effect, we have conducted a 2x3 repeated measures ANOVA

with factors: orientation (upright vs upside down) and image type (object

vs robot vs person). We have used the accuracy score (whether two im-

ages were correctly recognized as same or different) as the dependent vari-
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Figure 3.3: Perceived humanlikeness. The level of humanlikeness based on the Godspeed
questionnaire presented for each type of stimuli.

able. We have calculated a mean score of accuracy for each image type

in both orientations to obtain six scores (theoretical range 0-33). Analy-

sis showed that the main effect for orientation was statistically significant

[F(1,46)=14.36, p<0.001, η2G=0.03]. More images were recognized correctly

in the upright (M=31.45, σ=1.22) than upside down (M=30.98, σ=1.71)

position. However, this main effect can be explained as a result of sta-

tistically significant interaction effect between orientation and image type

[F(2,92)=4.97, p=0.01, η2G=0.02]. If robots elicit configural processing, then

interaction effects should be significant for images of robots, but not for ob-

jects. Confirming this assumption, the interaction effect was found for peo-

ple [F(1,46)=13.77, p<0.001, η2G=0.08]. Recognition accuracy decreased for

upside down (M=30.72, σ=1.89) compared to upright (M=31.65, σ=1.19)

images of people. Similar results were found for images of robots, where

interaction effect was significant [F(1,46)=7.25, p=0.01, η2G=0.04]. Upright

images of robots were recognized more accurately (M=31.39, σ=0.95) than

upside down (M=30.88, σ=1.57) (see Figure 3.4). The interaction effect was

not statistically significant for objects, neither any other interaction nor main

effects were found.
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Figure 3.4: The interaction effects between types of stimuli and orientation. The drop of
the recognition accuracy is visible when comparing upside down with upright orientation
for human and robot stimuli. The inversion does not affect recognition of objects.

The same statistical analysis as for the recognition accuracy was applied

for reaction times. A 2x3 repeated measures ANOVA was used to analyze

data. All main effects and interactions were significant. The main effect of

image type was statistically significant [F(2,92)=14.56, p<0.001, η2G=0.05].

Post-hoc comparisons using Bonferroni correction for family-wise error rate

indicated mean reaction times between groups were significantly different

from each other p<0.001 (object, M=879.88 ms, σ=62.97; robot, M=975.05

ms, σ=131.96; human, M=1072.23 ms, σ=146.04). Furthermore, reaction

time was significantly longer [F(1,46)=12.33, p<0.001, η2G=0.01] for upside

down (M=1004.41 ms, σ=158.1) compared to upright images (M=947.03 ms,

σ=118.84).

3.3.3 Establishing validity of the inversion effect as a method for estimating

humanlikeness

The above analysis indicated 3 image types differed in their perceived level

of humanlikeness. The robot and human body images elicited the inversion

effect. In the following step we tested the relationship between the change
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Figure 3.5: Magnitude of inversion effect by stimuli type. Percentage difference of recog-
nition accuracy between upright and upside down images grouped by image type.

of recognition accuracy of images due to rotation and their perceived hu-

manlikeness. We calculated a percentage of correct responses provided by all

participants for each image in upright and upside down orientations. Then,

we have subtracted the percentage of accuracy in the upside down orientation

from the upright orientation for each image. The outcome is a measure of

the handicap caused by the inversion effect of an image (Figure 3.5). Since

the magnitude of the inversion effect is greatest for human body postures

(which are also the most humanlike) a positive linear relationship between

humanlikeness and the recognition accuracy should be found.

Finally, we paired the perceived humanlikeness score with the magnitude

of inversion effect for each image. This data was plotted in order to determine

a most suitable regression model to be used. Linear regression analysis was

used to test if the perceived humanlikeness predicted the handicap caused

by the inversion effect. Results of regression indicated that the predictor

gives explanation to 5% of the variance [adjusted R2=0.05, F(1,97)=6.28,

p=0.01]. Perceived humanlikeness was associated with magnitude of the

inversion effect (β=0.007, p=0.01). The regression equation is: inversion

handicap = -0.003 + 0.007 * perceived humanlikeness (Figure 3.6).
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Figure 3.6: Relationship between humanlikeness and a drop in recognition accuracy. This
scatterplot presents relation between the score in the Godspeed questionnaire and the
magnitude of a inversion effect for all stimuli with a regression line (α=-0.003, β=0.007).

3.3.4 Grouping robots

After establishing that there is linear relationship between the perceived hu-

manlikeness of an image and decreased recognition accuracy in an upside

down position, we were interested to see which robots could be grouped to-

gether and how many clusters exist. This was especially important since we

used a wide spectrum of robot images, such as machine like (e.g. Roomba),

humanoid (e.g. ASIMO) and androids. To accomplish this data from the

previous subsection was used, however using only images of robots. Parti-

tioning around medoids (PAM) algorithm [125] was used to determine clus-

ters of robots. Plotting the data suggested that there are 2 clusters, fur-

ther confirmed by optimum average silhouette width. The PAM algorithm

with 2 clusters showed that in the first cluster there are the most humanlike

robots: androids, while all the other robots created the second cluster (see

Figure 3.7).

To determine whether those two clusters significantly differ from each

other, we analyzed whether a drop of recognition accuracy and perceived

humanlikeness for images included in the clusters were different. To analyze
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Figure 3.7: Clusters of robots. Two clusters of robots created using the PAM algorithm
based on their perceived humanlikeness and magnitude of inversion effect. The right
cluster includes only androids. All the remaining robots formed the other cluster.

this difference in participants performance we used paired-samples t-tests.

There was no statistically significant difference between two clusters of robots

in the accuracy recognition drop caused by an inversion effect. However, a

statistically significant difference in their perceived humanlikeness [t(46)=8.3,

p<0.001] exists. The cluster consisting of androids was perceived as more

humanlike (M=2.35, σ=0.67) than all the other robots (M=1.76, σ=0.27).

Finally, following the same procedure as described above, we have used

the PAM algorithm to create clusters based only on 1D data of robots’ per-

ceived humanlikeness. Results were the same as in the first clustering: we

obtained 2 clusters of robots that included androids vs all the other robots

(as shown in Figure 3.7).

3.4 Discussion

Results indicate that three types of stimuli significantly differed in their per-

ceived level of humanlikeness. As could have been expected, people were

rated the highest and robots were perceived as more humanlike than objects.

It is noteworthy that the average humanlikeness of robots is closer to objects
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rather than people.

This study investigated whether inversion effect could be used as an in-

dicator for humanlikeness of robots. The inversion effect is a phenomenon

when an object’s recognition is worse in the upside down than upright ori-

entation. It is a result of configural processing of an object in which spatial

relations among parts are used to individuate it from other objects. It is

unique for human faces and body postures (and certain objects with which

people have expertise). We proposed to use it in HRI while exploring robots’

embodiment.

Our results confirm previous studies (e.g. [223, 173]) on the inversion

effect - it was significant for people, but not for objects. Therefore, the

recognition of human postures is significantly handicapped when they are in

an upside down rather than upright orientation. The inversion effect also

affected recognition accuracy of robots. In other words, on the cognitive

level robots were processed more like humans than objects. The effect size

of the inversion effect in our study needs to be considered as small based

on the classification suggested by Bakeman [12] (0.02 - small effect, 0.13 -

medium effect, 0.26 - large effect). Furthermore, it was smaller for robots

than people, but the difference is still significant in both cases. Since the

inversion effect is an indicator of the configural processing, it seems that

in order to detect changes in robots’ embodiment, people perceive spatial

relations among a robot’s parts rather than just a collection of parts, as is

the case with objects. The important implication of this finding is that on

the perception level, robots can be perceived differently than objects and

potentially elicit more anthropomorphic expectations that can define early

stages of an interaction.

These results are also slightly surprising as we have included a wide spec-

trum of robots. Some of them look like objects or merely have a few human-

like body parts, while others are imitations of real people. It is possible that

the inversion effect was significant only for the most humanlike robots, such

as androids. However, as there were only 4 images out of 33 of these type

of robots, it is improbable that they would bias drastically the result for all

robots. In fact, the outcome of clustering separated androids from the other

robots, but when we compared these two clusters on the magnitude of inver-

49



sion effect, there was no significant difference. Therefore, the more plausible

explanation is that some other types of robots are processed configurally as

well.

Our results are inconsistent with the previous study which showed that

the inversion effect was not present for a robotic walking animation [113].

We hypothesize that the difference in findings is due to the robotic stimuli

used in the experiments. In this study we have used images of real robots.

However, the other study involved an animated robot that was made of simple

geometrical figures. It is possible that they were perceived as separate parts

rather than a full robotic body.

It is also interesting to see that there is a discrepancy in the perceived

humanlikeness of robots between the self-report and cognition. The results

of the Godspeed questionnaire indicate that people perceive robots’ human-

likeness as closer to objects rather than human beings. However, the results

of the inversion effect bring exactly opposite findings - robots were perceived

more like humans. It is possible that the participants adapted their responses

to a socially acceptable ones, e.g. they did not want to look like as if they per-

ceive robots to be almost humanlike. Furthermore, since they were asked to

rate images of people as well, they might have used them as the top extreme,

unreachable for robots. However, if they were asked to rate only the robots,

they might have rated some of them as more humanlike since androids would

become the upper extreme. In any case, this study indicates that the results

of self-reports can be affected by various conditions and there is a need for

cognitive measures that are not easily influenced.

The impact of the inversion effect on the recognition accuracy and reac-

tion time indicates that the upside down compared with upright images were

not only recognized worse, but also it took longer for participants to respond.

It is probably an expected outcome since upside down images are harder to

recognize. However, the analysis of the results also shows that the reaction

time differed between different types of images. It took the shortest time to

respond to images of objects, followed by robots and humans. It suggests

that with the increased level of humanlikeness it takes longer to recognize an

image. Nevertheless, it is important to note that despite increased reaction

time between these conditions, no difference was found for the recognition
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accuracy.

The analysis of the relationship between the inversion effect and perceived

humanlikeness indicates that there is significant linear relation. The higher

the perceived humanlikeness of a stimulus, the bigger is the handicap of the

inversion effect. However, the model is able to explain only a small fraction

of the variance (5%). This is an unsatisfactory result for suggesting the pro-

posed method over existing tools for measuring the level of humanlikeness of

a robot’s embodiment. This conclusion is further supported by the results

of clustering robots. While using the perceived humanlikeness and the inver-

sion effect for clustering indicated 2 clusters, exactly the same result could

have been obtained including only the former scale. These 2 clusters did

not significantly differ when we compared the drop of recognition accuracy

from upright to upside down orientation. Therefore, the inversion effect was

not significantly higher for the most humanlike robots compared to the other

types of robots. We conclude that the Godspeed Anthropomorphism Scale

is a more appropriate method for measuring humanlikeness as it permitted

better discriminability between clusters of robots and the inversion effect

explained only 5% of variance.

In this study we managed to develop and validate a new measurement

tool of humanlikeness that uses involuntary responses. The additional anal-

ysis suggests that this tool is inferior to existing measurement instruments.

Nevertheless, the equally important contribution of this study is in showing

that on the perception level the robots are processed more like humans than

objects. The expertise with certain type of stimuli, often used to explain the

inversion effect, cannot explain this finding, since the majority of our par-

ticipants had no or very little experience with robots. Therefore, it is more

sound to assume that robots have certain human characteristics that lead

observers to similar cognitive processes as when recognizing other people.

3.5 Limitations and future work

In this experiment we have used images of robots rather than actual robots.

We acknowledge that this decision could have introduced a bias on the ob-

tained results. On the other hand, previous research on the inversion effect
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also tested images while generalizing the results to real-world people and ob-

jects as it is the only viable option. Therefore, we believe that our findings

are applicable to the actual robots as well. There are numerous practical

concerns that should be considered for this type of experiment. Definitely a

financial constraint is an issue - our lab is unable to buy 33 different robots

that could represent such a wide spectrum of robots. Moreover, it would be

extremely difficult to present any type of physical stimuli with millisecond

precision, and hanging real humans upside down is quite a challenging task.

We used 33 images of robots that varied in shape and structure of their

bodies. Therefore, we are fairly confident that our results are generalizable

for the non-industrial robots that are currently available. It is quiet possible

that in years to come there will be robots with embodiments that differ from

those used in this experiment and repeating the study will be required.

Our findings show that robots can be processed on the cognitive level as

humans rather than objects. Consequences of this perception are especially

relevant before actual HRI is initiated, as embodiment can affect users’ expec-

tations regarding robots’ capabilities and willingness to initiate interaction.

However, as previous research suggests, during the course of an interaction,

the early conceptions regarding robots can be altered, e.g. [88, 195].

We found mirroring images in order to create distractors might not be

an optimal method. We suggest that in future studies on inversion effect

of robots, a more subtle modification can result in better discriminability of

different types of stimuli.

This study indicates at least some of the robots are processed configurally.

However, it is possible that only certain types of robots are processed con-

figurally, while others analytically. Future studies could investigate whether

the inversion effect is unique for the most humanlike robots, such as androids

or whether it is common for all types of robots. The promising directions

for future experiments, that can shed more light on this phenomenon, in-

clude exploring the inversion effect with industrial robots, the popular media

robots and toys with humanlike appearance. Analysis of differences between

robots that evoke the inversion effect and those which do not, should help

us to understand better what characteristics are required for a stimulus to

be perceived configurally. Finally, although images of robots and the human
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body can be processed as configural stimuli, it is still possible that on the

neural level, different processing streams are involved.

3.6 Conclusion

This experiment investigated whether the inversion effect can be observed

for robots and whether it could be used as a measurement tool of humanlike-

ness. The results indicate that although the effect was observed for the entire

category of robots it was not an appropriate measure of robots perceived hu-

manlikeness as it explained only the small percentage of variance. Therefore,

in the following experiments this measurement is not used and instead other

previously established measures from HRI and psychology fields will be used.
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Chapter IV

Anthropomorphism is a Type II process

As the previous study has shown the inversion effect is not the best suited

mean for measuring humanlikeness. Therefore, it is necessary to investigate

the possibility of using other measures. If anthropomorphism is a common

phenomenon, but people are reluctant to admit it, there is a question of how

to measure it. It is possible that people are probably not aware or willing

to disclose explicitly that they attribute human qualities to objects. This

issue could be a concern especially in the field of HRI since people tend to

anthropomorphize robots more than other technology [87]. Understanding

also whether the phenomenon of anthropomorphism is a result of Type I or

Type II process could also shed more light on the potential methods to be

used to measure it more accurately. If anthropomorphism is only a Type I

process, using explicit measures might be not appropriate for it. Similarly,

implicit measures might be not suitable if the process is Type II.

4.0.1 Social actors

The potential implications of the existence of dual process in anthropomor-

phism are relevant not only for implicit and explicit measures. Social reac-

tions to a robot could be driven by either process. From the work of Nass

et al. [149] on the Computers are Social Actors (CASA) paradigm, we know

that people interact with technology in a social way. Social response to a

robot in the field of HRI can be interpreted as evidence that a robot is be-

ing anthropomorphized [25]. However, Nass and Moon [148] suggested that

treating technology as a social actor does not equate to anthropomorphizing

it. Nevertheless, even though people explicitly expressed that they do not at-

tribute human characteristics to technology, while behaving socially towards
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it, it is still possible that anthropomorphism occurs on the implicit level.

This potential interpretation can be supported by the work of Fischer [82],

who found that there are individual differences in the respect of applying

CASA to verbal communication in HRI.

4.0.2 Research questions

This study addresses the following research questions:

• Research Question 1: Does the motivation for Type II processing effort

lead to less anthropomorphic perception of a robot?

• Research Question 2: Do people anthropomorphize robots implicitly

and explicitly?

• Research Question 3: Does the implicit anthropomorphization relate

only to a robot with which a person interacted or robots in general?

• Research Question 4: Are social responses to a robot correlated with

implicit and/or explicit anthropomorphism of it?

These questions should help to establish how suitable are different mea-

sures of anthropomorphism. In order to measure accurately anthropomor-

phism questionnaires require that it is a Type II process and people are

willing to provide honest answers. As for the social responses, it is necessary

to show that there is indeed a relationship between them and anthropomor-

phism or otherwise the former is not a suitable approximation of the latter.

4.1 Methods

We conducted an experiment with 2x2 between-subjects design: the robot’s

emotionality (emotional vs unemotional) to change the anthropomorphism

of the robot and motivation for Type II processing effort (low vs high)

by the manipulation of the instructions. We measured the ratings of the

robot’s performance, attribution of human traits on a scale derived from

[103, 122], humanlikeness [114], rational-experiential inventory [70], people’s
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general tendency to anthropomorphize using IDAQ [215] and implicit an-

thropomorphism using a priming task [98, 158]. The priming task is a com-

puter based task that involves participants quickly categorizing target objects

briefly shown on a screen after specific stimuli. The error rate indicates the

strength of association between the target and stimuli.

4.1.1 Materials and apparatus

All the questionnaires and priming task were conducted on a computer that

was placed 50 cm in front of the participants. The robot used in this exper-

iment was a Robovie R2 - machinelike robot that has humanlike features,

such as arms and a head (see Figure 4.1). We implemented the experimental

setup as indicated in [228] and described also in detail in Chapter 5. Since

body cues are more important than facial expressions for discriminability of

intense positive and negative emotions [9] and the robot does not have the

capability to show facial expressions, we implemented positive reactions by

making characteristic gestures, such as rising hands, and sounds, such as

saying “Yippee”. Similarly, negative reactions were expressed verbally, e.g.

“Ohh”, and gestures, e.g. lowering the head. In the unemotional condition

the robot said in Japanese “Wakarimasu” (literally “I understand”, meaning

“OK” in this context) and moved its hands randomly in order to ensure sim-

ilar level of animacy compared with the other condition. For every response

of the robot, its reactions slightly varied.

4.1.2 Procedure

Participants were told that they will participate in two different studies. In

the first study they were asked to fill out a demographic, IDAQ and the

rational-experiential inventory questionnaires. They were then taken to the

experimental room for the second study (see Figure 4.2). They were seated

1.2 m in front of Robovie R2. Participants were instructed that they will

play a game with the robot that is based on the “Jeopardy!” TV show.

The experimenter explained that in this show, contestants are presented with

general knowledge clues that are formed as answers and they should formulate

an adequate question for these clues. In this study participants were assigned
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Figure 4.1: Robovie R2

the role of the host and Robovie R2 was a contestant.

Figure 4.2: Diagram of the experimental setup
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On the left side of the participants we placed a table on which there

were cards with clues and names of categories of these clues. The cards were

placed upside-down. On the bottom side clues and correct responses were

written. On the top side of each card a money value was written that is

supposed to indicate the theoretical difficulty of the question. There were

six categories and five questions within each category. They were identical

to the ones used in the show that was aired on 4.07.2014. All participants

were told that they are assigned to read five questions from the category

“National Animals”. We have assigned participants to one category in order

to ensure that there are no differences in difficulty between the categories.

As an example the experimenter picked a card from another category and

explained the instructions. Participants were asked to read clues in normal

pace and after the robot responded provide feedback whether the response

is correct or wrong. After that they were asked to proceed to the next

question. Within the assigned category they were allowed to ask questions

in any order that they wanted. After ensuring that participants understood

the instructions the experimenter turned on the robot and left the room.

The robot was controlled by a wizard who was sitting in another room

and ensured that the robot’s responses and actions were always correct for

the given condition. The responses were prepared before the experiment and

they were identical for all participants. The robot always answered correctly

three questions and incorrectly two other questions. Incorrect answers were

still logically possible as the robot named a wrong animal. As an example

for a clue “There are no photographs, only illustrations of this symbol of

Mauritius” the correct response is “What is a dodo?”. In the emotional

condition after receiving feedback the robot responded either positively or

negatively depending on whether the response was correct or wrong. In the

unemotional condition the robot always reacted unemotionally. After the

fifth question, the robot asked participants to rate its performance on a scale

from 1 (the worst) to 100 (the best). After that it thanked them and asked

to call the experimenter.

The experimenter took participants back to the computer where they

completed the priming task and the remaining questionnaires. In the high

level motivation for Type II processing effort condition participants were
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instructed that their task performance and responses to the questionnaires

will be discussed after completing them and they will be asked to explain

them (see [72]). In the low level motivation condition, participants were told

that the responses will be anonymized. No actual discussion took place in any

condition and after filling out the questionnaires participants were debriefed

and dismissed.

4.1.3 Measurements

In this study we used several questionnaires as dependent measures. Japanese

version of questionnaires was used when it was available or otherwise back-

translation was done from English to Japanese. We measured individual

differences in anthropomorphism using IDAQ [215] (Appendix B) as they

could have an impact on Type II processing. This questionnaire on a scale

from 0 (not at all) to 10 (very much) measures the extent to which people

attribute human characteristics to non-human agents (e.g. “To what extent

does a car have free will?”). Moreover, in order to establish whether people

have preference for either reflective or intuitive type of thinking we used

the rational-experiential inventory [70] (Appendix C) that consists of two

subscales: need for cognition (NFC) and faith in intuition (FII). Items such

as “I prefer complex to simple problems” or “I believe in trusting my hunches”

were rated on 5-point Likert scales.

Furthermore, we included anthropomorphism scale derived from [114]

(Appendix E). It has 6 items that are measured on a 5-point semantic differ-

ential scale (e.g. “Please rate your impression of the robot on these scales:

1-inanimate, 5-living”. In addition, as a measure of anthropomorphism we in-

cluded a scale that measures the extent to which people attribute core human

traits (we used the Japanese version [122] that is based on [103]) (Appendix

D). We used only Human Nature (HN) traits that distinguish people from

automata as the study by [228] (described in chapter 5) indicated that only

this dimension of humanness is affected by a robot’s emotionality. These

traits were rated on a 7-point Likert scale (e.g. “The robot is... sociable”).

Moreover, we measured the extent to which Robovie is treated as a social

actor with the robot asking the participants to rate its performance on a
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scale from 1 (the worst) to 100 (the best). From the work of Nass et al.

[149] we know that people rate a computer’s performance higher if they are

requested to rate it on the same computer rather than another computer,

which Nass and colleagues interpret as an indication that people adhere to

norms of politeness and treat computers as social actors. Since in our study

in all conditions the robot answered correctly the same three questions and

incorrectly two questions, its performance should be rated the same if it is

not perceived as a social actor. A higher rating would indicate that it is seen

to bigger extent as a social agent.

Finally, we measured anthropomorphism implicitly using the priming task

[98, 158] implemented in PsychoPy v1.80.05. In this computerized task par-

ticipants were instructed that their speed and accuracy will be evaluated.

They were instructed that they will see pairs of images appearing briefly on

the screen. The first picture will be always a robot and they don’t have to

do anything with it as it only indicates the appearance of the second image.

The second picture will be either a silhouette of a human or object. A par-

ticipant’s task is to classify this target image as either a human or object by

pressing one of two keys on the keyboard. The experimenter explained that

speed and accuracy are important, but if a participant makes a mistake he

should not worry and continue. Before the actual task began, participants

had 48 practice trials that enabled them to become accustomed with the

task. During the practice trials no primes (images of robots) appeared on

the screen.

In the actual task the prime was either a picture of Robovie R2 or Papero.

We used Papero in order to see whether participants implicitly anthropomor-

phize only the robot with which they interacted or robots in general. The

prime image was followed by the target image. The target image was either

a silhouette of a human or object (we used 4 silhouettes of humans and ob-

jects). The prime image was displayed for 100 ms and it was immediately

replaced by the target image that was visible for 500 ms. If participants did

not classify the target image within that threshold, a screen with a message

stating that they have to respond faster appeared. For each trial, there was

500 ms gap before the next prime appeared on the screen. In total there

were 192 trials and the order of pairs of images was random.
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4.1.4 Participants

We recruited forty participants who were undergraduate students of various

universities and departments from Kansai area of Japan. They were all native

Japanese speakers. For time compensation they were paid 2000 Yen. Their

mean age was 21.52 years old and it ranged from 18 to 30 years.

4.2 Results

In order to establish the potential involvement of dual process in anthropo-

morphism we analyzed the effect of our manipulation and inter-correlations

between dependent variables. The assumptions of the presented statistical

analyses were met, unless otherwise specified.

Firstly, we checked the reliability of the used scales. The level of Cron-

bach’s α = .7 is regarded as a threshold for a scale’s reliability. Based on

this criteria we discarded FII from further analysis as its reliability was α

= .38. Furthermore, we removed one item from NFC (“Thinking hard and

for a long time about something gives me little satisfaction.”), humanlike-

ness (“Without Definite Lifespan - Mortal”) and HN (“Nervous”) in order

for these scales to reach the adequate level of reliability. IDAQ had excellent

reliability (Cronbach’s α = .92).

Secondly, we looked for a potential role of demographic or individual dif-

ferences as moderators for humanlikeness, HN or robot’s performance rating.

In order to do that, we included one by one gender, individual differences in

anthropomorphism (IDAQ) and need for cognition (NFC) as moderators in

ANOVAs for these dependent variables. None of them interacted with other

factors and they were dropped from further analyses.

4.2.1 Explicit measures

A two-way ANOVA with emotionality and motivation as between-subjects

factors showed that there were no significant main or interaction effects of

manipulation on humanlikeness, see Figure 4.3.

Due to the violation of the assumption of normal distribution for para-

metric testing for HN, we used a permutation test with 2 factors and 10000
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Figure 4.3: Rating of humanlikeness. Attribution of humanlikeness in experimental con-
ditions for emotionality and motivation factors.

permutations using the function ezPerm [133] implemented in R [172]. We

found the main effect of emotionality on attribution of HN traits to the robot,

p = .03 (Figure 4.4). Emotional robot (M = 3.7, σ = .46) was attributed

more HN than unemotional robot (M = 3.11, σ = 1.06).

4.2.2 Social responses

A two-way ANOVA with emotionality and motivation as between-subjects

factors indicated a significant main effect of the robot’s emotionality on the

rating of its performance, F(1,36) = 5.67, p = .02, η2G = .14 (see Figure 4.5).

Participants rated the performance of the emotional robot (M = 72.6, σ =

10.02) higher than that of the unemotional robot (M = 63.85, σ = 12.87).

4.2.3 Implicit measures

The reliability of recognition between different types of target images of hu-

mans and objects was high, Cronbach’s α = .97 and α = .9 respectively. Due

to some participants classifying all the images as one category irrespective

of what the actual target image was, we trimmed the data removing the top
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p < .05

Figure 4.4: Rating of human nature. Attribution of human nature traits in experimental
conditions for emotionality and motivation factors.

 p < .05 

Figure 4.5: Rating of the robot’s performance. Mean score of the robot’s performance
rating in experimental conditions for emotionality and motivation factors.

and bottom 5% of scores. Due to violation of the assumption of normal dis-

tribution for parametric testing, error rates for each prime x target category

were analyzed using permutation test with 2 factors and 10000 permutations.
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Robovie R2 and human pair was significantly affected by the motivation, p

= .04. In the low motivation for Type II processing effort condition (M=.85,

σ = .08) Robovie R2 was stronger associated with the human category than

in the high motivation condition (M=.75, σ = .17).

Similarly, Papero and human pair was significantly affected by the moti-

vation, p = .03. In the low motivation for Type II processing effort condition

(M = .88, σ = .08) Papero was more strongly associated with the human

category than in the high motivation condition (M = .76, σ = .19). No sig-

nificant main or interaction effects were found for the Robovie R2 and object,

and Papero and object pairs.

Priming tasks are robust against faking responses and we deliberately

administered a task that only allowed a response window of 500 ms. This

setup should inherently undermine controlled response processes. However,

to make sure that the results are not due to participants engaging in artifi-

cially slowing down their responses, we analyzed reaction times and did not

find significant differences for any prime x target category pairs. Therefore,

this alternative explanation can be discarded.

4.2.4 Inter-correlations

In the next step of the analyses, in order to better understand the relationship

between multiple variables used in this study we have created a correlation

matrix (see Table 4.1). The only statistically significant correlation was be-

tween humanlikeness and HN. The rating of the robot’s performance was

not significantly correlated with any measures of anthropomorphism. More-

over, IDAQ did not significantly correlate with neither HN or humanlikeness.

We found a significant negative correlation between Papero x object implicit

score and rating of the robot, r = -.36, N = 36, p = .03. No other implicit

score was significantly correlated with explicit measures.

We have followed the analyses of relationships between the measures by

looking at inter-correlations in each of the experimental conditions separately.

In the emotional condition there were significant correlations between IDAQ

and humanlikeness (r = .54, N = 20, p = .02), and IDAQ and HN (r = .54,

N = 20, p = .02). However, in the unemotional condition none of the scores
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Table 4.1: Correlations between explicit measures for all conditions with Pearson’s r coef-
ficient.

Measure IDAQ NFC Humanli. HN Robot
rating

IDAQ −.18 .26 .21 .27
NFC −.18 −.01 −.02 .09

Humanli. .26 −.01 .34∗ .27
HN .21 −.02 .34∗ .13

Robot rat. .27 .09 .27 .13
∗p < .05

were significantly correlated. In the low motivation for Type II processing

effort condition there were significant correlations between humanlikeness

and HN (r = .49, N = 20, p = .03), and robot rating and HN (r = .47, N =

20, p = .04).

4.3 Discussion

In this study we investigated whether anthropomorphism is a result of a dual

process, and the relationship between treatment of a robot as a social actor

and anthropomorphism of it. We wanted to answer the research questions

whether motivation for providing normative responses affects anthropomor-

phism, and whether people anthropomorphize robots explicitly and implic-

itly.

If people think that attributing human characteristics to non-human

agents is undesirable, when they are requested to justify their responses they

should be less willing to anthropomorphize. However, we did not find sig-

nificantly more normative explicit responses when participants were highly

motivated for Type II processing compared with the low motivation condi-

tion. Neither attribution of HN traits nor humanlikeness was affected by

this manipulation. On the other hand, in the high motivation condition par-

ticipants implicitly associated both Robovie R2 and another robot (Papero)

less with a human than in the low motivation condition. Motivation did not

impact the association between the robots and objects. These results sug-

gest that implicitly anthropomorphic attribution became weaker for robots
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in general and not only the robot with which participants interacted.

Put together, these findings are opposite to what dual process theories

reveal: Type I processing should not be affected by motivation, but Type II

processing should provide normative responses. Considering that the moti-

vation did not affect explicit measures, we can conclude that people do not

perceive anthropomorphism as a mistake and do not show reluctance to jus-

tify attribution of human traits to robots. This is an important methodolog-

ical finding as it suggests that people should not try to present themselves in

a positive light by rating anthropomorphism dishonestly in questionnaires,

which is one of the main concerns regarding the use of self-reports. As a

result, self-reports of anthropomorphism (at least in this single study) can

provide psychometrically reliable and valid results. On the other hand, it

is not clear to the author why motivation affected implicit association of

robots in general with the human category. Implicit measures are believed

to be more resilient to faking responses, but the results indicate that the

participants’ recognition dropped when they were expecting that their task

performance will be discussed with the researcher. More research is needed

to shed light on this finding.

In relation with our second research question, we found that the robot’s

emotionality affected its anthropomorphism with people attributing more

HN traits. This is consistent with the previous research [228] (see chapter

5). However, compared with that study we did not find a difference in the

rating of the robot’s anthropomorphism. Nevertheless, although there was

no significant difference, the emotional robot had higher mean anthropomor-

phism score than the unemotional robot, which was expected based on the

previous findings [228] (see chapter 5).

Apart from the explicit anthropomorphism, we wanted to know whether

people also implicitly anthropomorphize robots. Robovie R2 was not signif-

icantly stronger associated with human category in emotional than unemo-

tional condition. Therefore, that would suggest that people did not anthro-

pomorphize the robot implicitly. This finding can provide some empirical

support for the previously empirically unsupported claim that anthropomor-

phism requires Type II processing [218]. However, it is possible that there

are some other factors than emotionality that are affecting anthropomor-
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phism and could have an impact on the implicit association with the human

category.

Our last research question concerned the relationship between treating a

robot as a social actor and anthropomorphizing it. Social responses towards

robots are regularly used as an indication that they are being anthropomor-

phized. However, it was unknown whether social responses are an accurate

proxy for anthropomoprhism. According to Nass and Moon [148] people treat

technology as social actors, but do not see it as a human. When analyzing all

the data, we did not find significant correlations between anthropomorphism

and the rating of the robot’s performance. Although both anthropomor-

phism and robot rating were affected by emotionality, the lack of correlation

between them indicates that the effect of manipulation was exhibited on dif-

ferent variables. However, in the low motivation for Type II processing effort

condition, HN was significantly correlated with robot ratings. It is possible

that although the manipulation of the motivation did not significantly af-

fect anthropomorphism of Robovie, the group who was highly motivated for

Type II processing provided answers that did not match the treatment of the

robot as a social actor. As a result, the correlation was significant only for

participants that provided intuitive rating of anthropomorphism.

This would indicate that treating a robot as a social actor is associated

with higher attribution of human characteristics to it. That would also mean

that the perception of a robot as a social agent could be used as a proxy for

anthropomorphism in HRI. In addition, our results further support the find-

ings of Fischer [82] that social responses to robots are by no means mindless.

However, it is only the attribution of HN traits to a specific robot that is

related with social treatment of it. Neither its humanlikeness nor individual

tendency to anthropomorphize objects were correlated with the rating of

the robot’s performance. [82] showed that individual differences can impact

whether people treat robots as social actors. Our results suggest that the

general tendency to anthropomorphize is not one of these factors.
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4.3.1 Limitations and future work

In this study we used a priming task with silhouettes of humans to measure

the implicit association for the robot. Although the reliability of pictures

used in this study was high, a question regarding validity of this implicit

measurement remains open. Currently, there are no validated implicit mea-

surement tools to which we could compare our measurement. We expected

to find some correlation between the implicit and explicit measures at least

in the low motivation condition as participants were encouraged to provide

unbiased answers. However, implicit association between Robovie R2 and

humans was not correlated with explicit anthropomorphism. It is also pos-

sible that implicit attitudes are harder to change and the manipulation of

emotionality in our study was too weak to affect it. Additional work is needed

on implicit measures of anthropomorphism. Moreover, efforts on developing

physiological measures [132] could also help to answer question whether peo-

ple anthropomorphize robots also implicitly or only explicitly as suggested

by the results of our study.

The current results do not support the dual process model of anthropo-

morphism. Motivation for reflective thinking did not reduce anthropomor-

phism. However, it is possible that people do not see the lack of attribution

of human characteristics to non-human agents as a normative response. This

could explain the lack of differences in attribution of HN traits to the robot

between two motivational conditions. Future studies could include a measure

of norms regarding anthropomorphization to know whether people actually

perceive it as undesirable and whether there are any cultural differences re-

garding that norm. Furthermore, this experiment did not include a manip-

ulation check for motivation for reflective thinking. Therefore, it is possible

that the used manipulation did not induce different motivation between the

conditions.

Another potential explanation for the lack of difference could be due to

participants wanting to provide the responses that they perceived as desir-

able. In that situation, participants who wanted to rate the robot lower in

anthropomorphism, could not have done it in order to please the experi-

menter. However, to our knowledge, there is no research showing differential
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demand effects as a function of knowing the participants’ identity. If par-

ticipants wanted to please the experimenter, they should have produced the

bias irrespective of whether they expected an interview or not. In that case,

the scores of anthropomorphism in the low motivation condition should be

still higher than in the high motivation condition, but there are no signifi-

cant differences. If participants in the high motivation condition perceived

anthropomorphism as socially undesirable, but at the same time had much

stronger desire than low motivation participants to please the experimenter

the score could even itself out. However, that means that they would prefer

to present themselves in a negative light and face the experimenter in the

interview just to please him. We find this explanation as unlikely, but we

cannot completely rule it out based on the available data.

Future studies could manipulate the workload of working memory which

is also commonly used to impair Type II processing [72]. It is possible that

Type I processing is used only to detect humanlike shapes since they can

pose potential danger to a human being if not swiftly recognized. On the

other hand, Type II processing could be responsible for attribution of human

characteristics to robots without the use of Type I processing.

Another limitation of this study is the small sample size. Only forty

participants were recruited. It is possible that the effect for implicit measure

was too small to be significant with ten participants per condition and the

study did not have sufficient power. Therefore, future studies that involve

implicit measures of anthropomorphism should have bigger samples.

In summary, we did not find evidence of the dual process of anthropo-

morphism. The lack of suitable measurement tools currently available cannot

be excluded as a potential explanation of this finding. The biggest question

posed by this research is whether implicit anthropomorphism exists and how

to measure it. Moreover, we showed that the treatment of a robot as a social

actor is related with its anthropomorphism. The results of this study, put to-

gether with the previous work, suggests that while recognition of humanlike

shapes can be an automatic and intuitive process (Type I), attribution of hu-

man characteristics to a robot does require conscious and reflective thinking

(Type II).
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4.4 Conclusion

This study suggests that anthropomorphism is mainly a Type II process.

Moreover, people are not reluctant to disclose the level of anthropomorphism

of a robot and do not perceive it as normatively undesirable. From a method-

ological point of view this should mean a lower risk of participants providing

socially desirable, rather than honest answers when evaluating anthropomor-

phism on a scale. This suggests that self-reports, such as questionnaires, can

be used as a measurement tool of this phenomenon. Therefore, the remaining

studies presented in this dissertation will use mainly questionnaires as means

of measuring anthropomorphism.
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Chapter V

Dimensions of anthropomorphism I

In the remaining experiments presented in this thesis established mea-

sures from HRI and psychology fields will be used to measure anthropomor-

phism. As discussed in chapter 2 there are two dimensions of humanness:

Human Nature (HN) and Human Uniqueness (HU) and these dimensions

could also exist for anthropomorphism in HRI. Furthermore, the work on

dehumanization proposed several factors affecting each of these dimensions.

As it is not possible to include all factors affecting both dimensions in a

single experiment, we decided to choose intelligence from the UH dimension

and emotionality from HN dimension as previous studies showed them to

significantly affect robots perceived animacy and anthropomorphism, e.g [25,

74]. Therefore, I wanted to investigate how these two factors would affect

two-dimensional measures of anthropomorphism and whether it provides any

additional information over well established uni-dimensional measure. In this

study I want to answer the following research questions:

• RQ1: Are there two dimensions of anthropomorphism?

• RQ2a: Does a robot’s intelligence affect mainly UH dimension?

• RQ2b: Does a robot’s emotionality affect mainly HN dimension?

5.1 Method

Our study was conducted using a 2x2 between-subjects design: robot’s emo-

tionality (emotional vs unemotional) and intelligence (high vs low intelli-

gence). We have measured anthropomorphism using the scale derived from

[114], and attribution of traits for the UH and HN dimensions [107].
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5.1.1 Materials and apparatus

All the questionnaires were conducted using PsychoPy v1.77 [159] that was

run on a PC. The setup was the same as in the experiment described in

chapter 4. During the experiment, participants interacted with a NAO - a

small humanoid robot. As the robot does not have the capability to express

facial expressions, we implemented positive reactions by making characteris-

tic sounds, such as “Yippee”, and gestures, such as rising hands. It should

be noted that body cues are reported to be more important than facial ex-

pressions for discriminability of intense positive and negative emotions [9] as

used in this experiment. The negative reactions were represented by neg-

ative characteristic sounds, such as “Ohh”, and gestures, such as lowering

the head and torso. For each feedback provided by a participant the robot’s

reaction was slightly different. Therefore, there were 5 positive and 5 neg-

ative animations that were presented in random order. Unemotionality was

implemented by the robot saying “OK” and randomly moving its hands in

order to ensure a similar level of animacy as in the emotional conditions. For

every utterance made by the participants the robot acted slightly differently.

The robot’s responses to the quiz questions were prepared prior to the ex-

periment. The NAO robot was controlled by a wizard sitting behind a curtain

and ensuring appropriate reactions. In the intelligent condition, the robot’s

responses were always correct. In the unintelligent condition they were based

on the computer Watson’s most probable wrong answers as presented on the

second day of “Jeopardy! Watson challenge”. We did this in order to ensure

that the manipulation of intelligence represents the latest state of the art in

AI and even the wrong answers should make sense and be possible. There

is definitely a question regarding what is the appropriate level of intelligence

of a robot. Previous studies manipulated a robot’s intelligence on a very low

level, such as following a light [25]. In Wizard-of-Oz type of experiments it

is also possible to drift to fictional future where robots can have knowledge

far superior than humans with unrestricted access to information. However,

we believe that the current state of the art of AI in some conditions allows

robots to reach the level of intelligence that is close to human intelligence.

Watson’s victory in “Jeopardy!” with multi-champion human opponents was

72



an example of this that received a lot of publicity. Watson’s responses even

if incorrect, were mainly realistic although at times exhibited its non-human

nature. As in the near future it will be possible to provide similar level of

knowledge to robots, it is important to explore how it is going to affect HRI.

5.1.2 Measurements

In the experiment we have used several questionnaires as dependent mea-

sures. Individual Differences in Anthropomorphism Questionnaire (IDAQ)

[215] (Appendix B) was used to ensure that participants did not differ in their

general tendency to anthropomorphize between the conditions. Participants

rated on a Likert scale from 0 (not at all) to 10 (very much) to what extent

different non-human objects possess human characteristics (e.g. “To what

extent does a tree have a mind of its own?”). We conducted manipulation

checks to ensure that we had successfully manipulated the factors. We used

the Godspeed perceived intelligence scale [22] (Appendix F) for the robot’s

intelligence, that measures five items on a 5-point semantic differential scale

(e.g. “Please rate your impression of the NAO on these scales: 1 - incom-

petent, 5 - competent”). The manipulation of the robot’s emotionality was

measured using the extent to which NAO is capable of experiencing primary

emotions [74] (Appendix G) that had ten items on a 1 - not at all, to 7 - very

much, Likert scale (e.g. “To what extent is the NAO capable of experiencing

the following emotion? Joy”).

As a uni-dimensional scale of anthropomorphism we used the question-

naire from [114] (Appendix E). It measures six items on a 5-point semantic

differential scale (e.g. “Please rate your impression of the NAO on these

scales: 1 - artificial, 5 - natural”. We included this scale in order to confirm

that both factors affect robots’ perceived anthropomorphism and investigate

the relation between uni- and two-dimensional scales. The two-dimensional

scale of anthropomorphism was based on the degree to which participants

attributed UH and HN traits to the robot [103] (Appendix D). Both dimen-

sions had 10 items (see Table 5.1) and were measured together as a single

20-item questionnaire with Likert scale from 1 (not at all) to 7 (very much)

(e.g. “The NAO is ... shallow”). The traits which were used to measure
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Table 5.1: List of Uniquely Human and Human Nature traits used as a measurement of
two dimensions.

Uniquely Human Human Nature
broadminded curious

humble friendly
organized fun-loving

polite sociable
thorough trusting

cold aggressive
conservative distractible
hard-hearted impatient

rude jealous
shallow nervous

HN and HU were sampled from several studies in which normative data on

mean HN, HU and desirability ratings was available [103]. Their selection

was guided by the goals of maintaining the independence of the factors while

maximizing the difference between mean ratings on each factor [103]. This

measure was successfully used in several psychology and HRI studies, e.g.

[77, 122, 140]. Both scales had sufficient reliability: HU Cronbach’s α = .71

and HN Cronbach’s α = .84.

5.1.3 Participants

Forty participants were recruited at the University of Canterbury. They were

paid by $5 vouchers as time compensation. They were all native or fluent En-

glish speakers. However, the non-native English speaking participants were

excluded from the analysis as there could be cultural difference in associa-

tion of UH and HN traits. In order to keep the results consistent we have

discarded the data of these five participants from all the analyses. Out of

the remaining 35 participants, 19 were female. There were 24 undergraduate

and 8 postgraduate students, 1 staff member and 2 participants not asso-

ciated with the university. All of them had normal or corrected to normal

vision and none of them had ever interacted with a robot. Their ages ranged

from 18 to 48 years with a mean age of 26.69. The participants were mostly

New Zealanders (28) or British (4). Six participants indicated that they had
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previously watched a “Jeopardy!” TV show at least once.

5.1.4 Procedure

Participants were told before the experiment that they would play a quiz with

a robot. They entered the experimental room together with the experimenter

and were seated in front of a computer. NAO sat at the other end of the

room. After reading an information sheet about the study and filling out

consent forms the participants were asked to answer demographic and IDAQ

questionnaires. Then they were informed that they would now interact with

the robot. They were told that the robot was called NAO as the word would

appear later in the tasks to be completed on the computer, and they would

play a quiz based on the “Jeopardy!” TV show. Participants were told that

in this game show contestants are presented with general knowledge clues

that are formed as answers and they must give their responses in form of a

question. Therefore, it does not only require great knowledge, but also good

language understanding skills, so it should not be surprising that a computer

called Watson that managed to beat human champions in “IBM Challenge”

in 2011 was regarded as proof of great progress in AI development. In the

game with NAO, participants took the role of the host reading clues to NAO,

which took the role of the contestant.

On the stand next to the robot cards were placed with clues and above

them the categories of clues. On each card, there was also written the correct

response. The cards were placed upside-down with clues facing the table. On

top of each card was a value of the clues, which was supposed to represent

the theoretical difficulty of a question as in the real show. In total there

were six categories of clues. All these categories and clues were identical

as in the second match of “IBM Challenge”. Participants were explained

the rules of the game based on an example clue and asked to read the clues

at their normal pace. Compared with the original show, they were told

that the correct response of the robot must be identical to what was on the

paper. Otherwise the response was incorrect, even if the meaning of NAO’s

response was similar. They were also asked to provide feedback to the robot

on whether its response was correct or wrong and then proceed to the next
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question. After participants confirmed that they understood the instructions

they were told that they are assigned to the “EU, the European Union”

category, and had to ask five questions from that category in any order they

wished and remember how many answers the robot provided correctly. All

the participants were assigned to this category in order to ensure that there

would be no potential differences in difficulty between the categories. Then

the experimenter touched the robot’s head and said that he will leave the

participant alone with the robot for the task. The wizard started the robot

that stood up and introduced itself as NAO. At that point the participants

started reading clues for the robot. Depending on the condition the robot

either responded correctly or wrongly and waited for a participant’s feedback.

In the emotional condition the positive feedback led to a positive response

and a negative feedback to negative response. In unemotional condition the

robot always behaved unemotionally. After answering the fifth question, the

robot reminded the participants that it was the last question, thanked them

for participation, asked them to inform the experimenter who was waiting

outside and finally sat down.

When participants called the researcher, they had to say how many times

the robot had answered correctly and they were asked to continue the tasks

on the computer. Participants filled in the remaining questionnaires. At the

end of the experiment they were debriefed and released. The whole procedure

took approximately 25 minutes.

5.2 Results

We have analysed the data in three steps. Firstly, we checked whether the ma-

nipulations introduced in the experiment worked as expected. Secondly, we

looked at the factors affecting the robot’s anthropomorphizability. Thirdly,

we investigated the relationships between the measures of anthropomorphism

and its dimensionality. The assumptions of all the presented statistical anal-

yses were checked and met, unless otherwise specified.
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5.2.1 Manipulation check

As a pre-assumption the random assignment of subjects to the experimental

groups should result in lack of differences in general tendency to anthropo-

morphize objects between the groups as measured with IDAQ questionnaire.

This was confirmed as a two-way ANOVA with intelligence and emotionality

conditions as between-subjects factors did not indicate statistically signif-

icant differences between the experimental conditions1 (see Table 5.21 and

5.31). Furthermore, we did not find any interaction effects between IDAQ

scores and experimental conditions on measurements of two-dimensional an-

thropomorphism. Therefore, the general tendency to anthropomorphize was

dropped from further analysis.

1 The results of all conducted ANOVAs described in this chapter are in Table 5.2. For
the mean scores and standard deviations of all dependent measures please refer to Table
5.3. In the results section each described statistical test has a reference to the specific
row and column in the tables with numeric values that are relevant for that analysis,
e.g. see Table 5.21 and 5.31 means that the results of the presented ANOVA can be
found in Table 5.2 row number 1, and mean score and standard deviations are in Table
5.3 column number 1.
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Furthermore, we have manipulated the robot’s emotionality and intelli-

gence and hoped that our manipulation will significantly affect the degree

to which a robot is perceived as emotional and intelligent. A robot that

expresses emotionality should be attributed more primary emotions, but its

perceived intelligence should not be affected by this manipulation. Moreover,

the manipulation of a robot’s intelligence should affect its perceived intelli-

gence, but not the attribution of emotions. Since knowledge does not equate

to intelligence, it was possible that the robot in the unintelligent condition

would be perceived simply as less knowledgeable, but not necessarily less

intelligent.

A two-way ANOVA with intelligence and emotionality conditions as between-

subjects factors showed that there was only the main effect of the robot’s

emotional response on attribution of primary emotions to it (see Table 5.23

and 5.33). The robot was perceived as more emotional when it expressed

emotions compared with the condition where its feedback was unemotional.

Similarly, a two-way ANOVA with intelligence and emotionality condi-

tions as between-subjects factors indicated only the main effect of intelli-

gence on perceived intelligence of the robot (see Table 5.22 and 5.32). The

robot that was in the intelligent condition (provided correct responses) was

perceived as significantly more intelligent than when it provided incorrect

responses (unintelligent condition). These results indicate that our manipu-

lations were successful and the more knowledgeable robot was also perceived

as more intelligent.

5.2.2 Factors of anthropomorphism

In the next stage of the analyses we investigated what factors affect an-

thropomorphism. First, we analyzed how anthropomorphism of a robot is

affected by its intelligence and emotionality using the questionnaire of an-

thropomorphism. We hypothesized that both factors will significantly affect

anthropomorphism. A two-way ANOVA with intelligence and emotionality

conditions as between-subjects factors was conducted to establish the impact

of these factors on anthropomorphism. Our hypothesis was only partially

confirmed. There was a significant main effect of the emotionality condition
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on perceived anthropomorphism (see Table 5.24 and 5.34).

A robot was perceived as more anthropomorphic when it provided emo-

tional feedback than when its feedback was unemotional. The main effect

of the intelligence condition was not significant. In other words, the robot’s

intelligence did not affect its perceived anthropomorphism. Furthermore, we

did not distinguish between positive and negative emotional responses of the

robot, which could potentially be confounded with the intelligence condition.

However, the interaction effect between the two factors was not significant,

which implies that the type of the emotional response (positive or negative)

did affect the perceived humanlikeness.

Second, we analyzed data for two dimensions of anthropomorphism based

on studies of dehumanization. In particular, based on the research on de-

humanization, we hypothesized that the HN dimension would be affected

only by the emotionality factor, but not the intelligence factor. As hypothe-

sized using a two-way ANOVA with intelligence and emotionality conditions

as between-subjects factors we found only the main effect of emotionality

on HN to be statistically significant (see Table 5.26 and 5.36). When the

robot reacted emotionally it was attributed more HN traits than when it was

unemotional as shown on Figure 5.1.

Similarly, based on the research on dehumanization, we hypothesized

that the UH dimension will be affected only by the intelligence factor, but

not emotionality. Our results did not support this hypothesis. A two-way

ANOVA with intelligence and emotionality conditions as between-subjects

factors showed that neither of the factors, nor the interaction between them

significantly affected the attribution of UH traits (see Table 5.25 and 5.35,

and Figure 5.2).

5.2.3 Relationship between different dimensions

In the following step of the analyses we calculated a single score of anthro-

pomorphism of the robot that could be exhibited if one of the dimensions is

dominant. In order to do that we deducted the HN rating from the UH rat-

ing, whereby a positive score means that the robot was anthropomorphized

more strongly on the UH dimension and a negative score indicates that the
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Figure 5.1: Rating of HN dimension. Attribution of HN traits in experimental conditions
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Figure 5.2: Rating of UH dimension. Attribution of UH traits in experimental conditions
for intelligence and emotionality factors.
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robot was anthropomorphized more strongly on the HN dimension. A score

close to 0 indicates that the robot was anthropomorphized equally on both

dimensions or it was not anthropomorphized on either of them.

We have conducted another two-way ANOVA with intelligence and emo-

tionality conditions as between-subjects factors and found only the emotion-

ality condition to significantly affect UH - HN score (see Table 5.27 and 5.37).

A robot that had high emotionality was given a significantly lower score of

UH - HN. This supports our hypothesis that a robot that expresses emotions

will be anthropomorphized more strongly on the HN dimension. Further-

more, although intelligence did not statistically significantly affect the score,

it is worth noting that looking at the mean scores (see Table 5.37), the data

exhibits the opposite trend - increase of a robot’s intelligence leads to a higher

UH - HN score. That can suggest a closer relation between intelligence and

the UH dimension.

Finally, in order to better understand the relationship between various

dependent variables used in this study we have calculated a series of corre-

lations (see Table 5.4). Due to the fact that the UH - HN score is a function

of UH and HN dimensions we found a strong positive correlation between

the UH dimension and the UH - HN score. Similarly, there was a strong

negative correlation between HN and the score of difference between the di-

mensions. What is more interesting is that only HN was significantly and

strongly positively correlated with anthropomorphism, but UH was not cor-

related with the latter. However, for our model the most important is the

relation between UH and HN in order to establish whether there are two dis-

tinct dimensions of anthropomorphism or only one. We found a strong and

highly significant correlation (r = .55, N = 35, p < .001) between these two

dimensions that could indicate that they are not independent and measure

identical constructs.

Based on these results, we have followed our analyses a step further and

explored that relation. We divided HN and UH scores into two categories

(high vs low) using median splits - scores below the median were qualified

as low HN or UH, while the scores above the median formed the high HN

and UH groups. Finally, we correlated the UH and HN scores for each of

the categories separately. There was a strongly positive and statistically
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Table 5.4: Correlations Between Measures with Pearson’s r coefficient.

Measure UH HN Anthro. UH - HN
UH .55∗∗∗ .14 .41∗∗

HN .55∗∗∗ .47∗∗ −.53∗∗∗

Anthro. .14 .47∗∗ −.38∗

UH - HN .41∗∗ −.53∗∗∗ −.38∗

∗p < .05, ∗∗p < .01, ∗∗∗p < .001

significant correlation for low HN subjects between their HN and UH scores,

r = .67, N = 18, p = .003. However, for high HN subjects their HN and UH

scores were not correlated, r = .15, N = 17, p = .58. Similarly, we found

a strongly significant and positive correlation for low UH subjects, between

their UH and HN scores, r = .65, N = 18, p = .004, but no correlation for

high UH subjects between their UH and HN scores, r = .22, N = 17, p =

.4. These results indicate that the relation between these two dimensions

is not completely straightforward. The dimensions are related for half the

subjects, but not the other half, which might indicate that UH and HN do

not measure exactly the same aspects of anthropomorphism.

Finally, we investigated the dimensionality of anthropomorphism by con-

ducting a confirmatory factor analysis. We have used maximum likelihood

estimator in order to establish how well a model with two factors (UH and

HN) and 10 parameters on each factor can explain the total score of HN and

UH. Our two factor model showed bad fit to the data χ2(169, 35) = 358.15,

p < .001; RMSEA = .18; SRMR = .19. However, a single factor model of an-

thropomorphism was also a bad fit χ2(170, 35) = 370.92, p < .001, RMSEA

= .18, SRMR = .16. This indicates that future studies should have much

bigger sample size in order to establish the optimal number of dimensions of

anthropomorphism.

5.3 Discussion

In this study we investigated whether anthropomorphism similar to human-

ness is a two dimensional rather than uni-dimensional phenomenon. In par-

ticular, we hypothesized that the dimensions of humanness (UH and HN) and
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the factors that affect them could be used as a model of anthropomorphism

for HRI.

Previous studies showed that a robot’s intelligence and emotionality af-

fect its perceived life-likeness and anthropomorphism [25, 74]. Our study

confirmed that a robot that expressed emotions was perceived as more an-

thropomorphic than when it was reacting unemotionally. However, its intel-

ligence did not affect the measure of anthropomorphism. This result is in

contradiction with [25]. We think that different results obtained in these two

studies is mainly due to the manipulation used and measurement. Bartneck

and colleagues used a very low level of intelligence - following light - by a

robot. On the other hand, the intelligence manipulation used in our study

represents the latest state of the art in AI and refers to knowledge-based

type of intelligence that is specific to humans. It is possible that participants

saw the intelligent robot as too intelligent and that led to lower anthropo-

morphization. In other words, the questions asked in this quiz are not easy

to answer even by humans. Therefore, it is possible that participants did

not themselves know the answers to some of the questions and perceived

the robot as too intelligent for a human being, which would not make it

be perceived as more anthropomorphic compared to a robot that answered

incorrectly.

However, the more plausible explanation is that even in unintelligent

condition, the robots responses, although incorrect, still made sense and

were possible rather than being completely random. In that sense, the robot

still expressed high communication skills and good understanding of human

language. Although in the intelligent condition it was perceived as more

intelligent, it is possible that in the unintelligent condition its responses were

humanlike enough for subjects to anthropomorphize it. This explanation is

further supported by the fact that even in highly emotional condition, the

robot was still stronger anthropomorphized on UH than HN dimension as

indicated by mean UH - HN scores that never drop below 0. That means

that irrespective of the experimental conditions participants attributed more

UH than HN traits to the robot.

The second big difference between Bartneck et al. [25] study and ours

is the measurement of anthropomorphism. We measured anthropomorphism
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of the robot using a questionnaire, whereas in the other study anthropomor-

phism was measured by the number of hits inflicted upon the robot that was

supposed to be killed. However, the higher tendency to kill a robot under

certain conditions does not necessarily mean that it is perceived as more

anthropomorphic, but animate. Therefore, although intelligence can make a

robot more life-like, it does not necessarily make it more anthropomorphic.

There could be different factors affecting these two phenomena. It is possi-

ble that intelligence may be less important as a factor of anthropomorphism

in the context of robotics as people can expect them to be intelligent. As

such, there could be a high anthropomorphism baseline that includes high

intelligence expectations, which cannot be easily exceeded.

The analyses of two dimensions of anthropomorphism provided only a

partial confirmation for our hypothesis for RQ1. The HN dimension, also

known as Experience, was only affected by the robot’s emotionality, but not

intelligence. This finding is consistent with previous work on dehumaniza-

tion (e.g. [102]), but it contradicts previous work in HRI [77] which found

no difference between the two dimensions as dependent variables. The sec-

ond dimension - UH (Agency) was supposed to be influenced by intelligence;

however in our study neither of these factors had influence on it. Intelli-

gence did not have an effect on anthropomorphism measured on either a

uni-dimensional or two-dimensional scale.

It is possible that other factors more strongly affect the UH dimension,

such as intentionality or communication capabilities [102]. Therefore, future

studies should explore further the role of agency and its different sub-factors

in order to understand better its outcomes in HRI. An alternative explana-

tion could be that only the factors from one dimension (HN) play a role in

a robot’s anthropomorphizability. HN is the dimension that is supposed to

distinguish humans from automata [102]. It is possible that only the factors

from this dimension affect anthropomorphism of a robot. In particular, intel-

ligence did not significantly affect anthropomorphism, which can mean that

dehumanization is not necessarily the reverse process to anthropomorphism.

This emphasizes the need for researchers to be considerate when applying

findings from research of dehumanization in the context of robotics.

However, even if the model of humanness cannot be directly applied to
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anthropomorphism it is possible that both are multi-dimensional phenom-

ena. We believe that although our results cannot provide the definite answer

due to limited impact of intelligence on anthropomorphism, they are promis-

ing enough to spur further research on this topic. Our data showed that the

robot’s emotional capabilities made it being anthropomorphized stronger on

the HN dimension. Although not statistically significant, we have noticed the

opposite trend for the intelligence that affected mainly the UH dimension.

This kind of different form of anthropomorphization cannot be distinguished

using only uni-dimensional measurement tools of anthropomorphism. How-

ever, in order to fully benefit from such a distinction it is necessary to research

what are different consequences for HRI depending on how a robot is being

anthropomorphized. In our future research we plan to address the question

of whether people will have different mental models of a robot and behave

differently when interacting with it, similarly to their changed behaviour

towards dehumanized others, e.g. [96, 102].

Apart from investigating further what factors affect anthropomorphism,

and how and what are its consequences, it is crucial to investigate their exis-

tence and the relationship between them. In order for anthropomorphism to

be at least two-dimensional, it is necessary for the dimensions to be to a cer-

tain degree independent. If both dimensions measured the same, there would

be hardly any potential benefit of measuring anthropomorphism on these di-

mensions rather than using uni-dimensional scales. However, our data not

only suggested different effects of independent variables on two-dimensions

of anthropomorphism, but also showed that these dimensions are at least

partially independent. The initial correlation between UH and HN dimen-

sions was significant. However, further analyses revealed that they are only

correlated when a robot was attributed to no or few characteristics of these

dimensions. On the other hand, when the robot was anthropomorphized on

either of the dimensions, they were independent.

In summary, we believe that a question of dimensionality of anthropo-

morphism should receive further attention by the HRI community. It can

not only help us to understand better what are the factors affecting a robot’s

anthropomorphizability, but also to measure more accurately how it is being

anthropomorphized. Ultimately, HRI can be improved by attributing a robot
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only with anthropomorphic characteristics that can facilitate the interaction

and avoiding implementing human attributes that could hamper it.

5.4 Conclusion

This experiment suggests that anthropomorphism can be potentially a multi-

dimensional phenomenon. The results indicate that a robot’s emotionality

can affect its anthropomorphism. Moreover, it affects mainly HN dimen-

sion of humanness as work on dehumanization would indicate. However, the

results for intelligence are inconsistent with previous research. The intelli-

gence of a robot did neither affect its anthropomorphism nor HU dimension

of humanness. Therefore, the follow up studies will use different factors to

investigate whether it is intelligence that does not affect anthropomorphism

of a robot or HU dimension is not relevant for robots and therefore only HN

dimension should be considered.
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Chapter VI

Dimensions of anthropomorphism II

Previous study showed that more research is needed to investigate the dimen-

sionality of anthropomorphism in HRI. The emotionality of a robot affected

the attribution of HN traits to it, but intelligence did not affect the UH di-

mension [228] (see chapter 5). The current study aims to investigate further

whether other factors affect these two dimensions. In particular, we chose

intentionality of a robot as a factor that is believed to be associated with

UH [102]. We also evaluated whether a robot’s embodiment is related more

strongly to the HN dimension as suggested by [97].

In the recent years there is increased interest in moral responsibility of

robots for their actions [121]. Work on human perception of moral agency

of others and their responsibility for wrongdoings suggests that it is people

who are perceived high in UH/agency that are perceived as blameworthy for

their wrongdoings [96]. It is possible that a robot who is attributed with

more UH/agency traits will be also perceived as morally responsible for its

immoral actions.

This study addresses the following research questions:

• Research Question 1: Does a robot’s appearance affect the attribution

of HN/Experience traits?

• Research Question 2: Does a robot’s perceived intentionality affect

attribution of UH/Agency traits?

• Research Question 3: Is an intentional robot perceived more as a moral

agent than an unintentional robot?
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6.1 Method

We have conducted an experiment with a 2x2 between-subjects design. We

manipulated the robot’s intentionality by its cheating behavior (unintentional

vs intentional) and embodiment (machine-like vs humanlike). We measured

the perceived level of anthropomorphism using human traits for both di-

mensions of humanness: UH and HN [77], humanlikeness on a scale derived

from [114], experience and agency dimensions of mind [97]. Furthermore, we

measured intentionality of a robot as a manipulation check.

6.1.1 Materials and apparatus

In this study participants interacted with one of the robots: Geminoid HI-2

or Robovie R2. Geminoid HI-2 is a highly humanlike robot that is a copy

of a real person. On the other hand, Robovie R2 is a machine-like robot

that has some humanlike features, such as arms or head. Both robots spoke

with the same synthesized voice. In order to ensure correct reactions from

the robots we have implemented this experiment as a Wizard-of-Oz study,

where the robots actions were controlled by a researcher sitting in another

room. Moreover, as both robots use different systems, we implemented their

reactions in a way that kept the response delay the same for both platforms.

Furthermore, we have used a laptop on which participants answered all the

questionnaires.

6.1.2 Procedure

Participants were asked to play a traditional Japanese game “Acchi muite

hoi” with a robot. They were told that a prototype of the robot was prepared

for a tournament and they will test it. The robot has to win at least 80% of

the games (which is 8 out of 10 games they were asked to play) or otherwise

it will be destroyed. In the “Acchi muite hoi” game one participant moves a

finger sideways in front of the opponent and at the same time the opponent

moves her head sideways. Both of them do it at the end of one of them

saying “hoi” in “Acchi muite hoi” phrase. If a player moving his head does

it in the same direction as the other player he loses the game. If they move
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in different directions then a player moving his head is the winner.

After explaining the rules of the game to the participants, the researcher

played three example games with the robot. He always won the first game

and lost the second game. From a pilot study it became apparent that partic-

ipants tried to cheat the robot by delaying their responses. Therefore, during

the third example game, the researcher explained that timing is important

and if a participant’s response will be delayed the robot will request to re-

peat the game. After confirming that participants understood the rules of

the game the researcher left them alone with the robot in the room. After all

ten games were played, the experimenter returned to the room and asked the

robot about the outcome of the game. Finally, participants were requested

to fill out questionnaires on a computer.

In the current setup the robot had to move its head and the participant

moved her finger. The robot was the one saying “Acchi muite hoi”. In

the unintentional (control) condition, the robot played all 10 games fairly

and at the end it admitted not winning enough games. In the intentional

condition, during rounds 3, 6 and 9 the robot “cheated” by waiting until

participant moves her finger before making its move or changing the direction.

Furthermore, when asked by the experimenter at the end of the game about

the outcome it claimed to have won more than 80% of the games. Since some

participants might have opposed the outcome announced by the robot, the

researcher in all conditions informed them that the game was recorded and

the video will be used to verify that everything worked correctly.

Cheating behavior during a game in a previous study led to higher percep-

tion of intentionality of a robot [191]. In that work, a different game (“Paper,

rock and scissors”) was used. Due to a lack of fingers in Robovie R2 and the

limited hand movement available by Geminoid HI-2, we had to use a different

game. In Japan “Acchi muite hoi” is often played as a follow up game for

“Paper, rock and scissors”. Since “Acchi muite hoi” requires only head or

hand movement from a robot, it is also more suitable for a broader spectrum

of robots that do not have humanlike hands. Since in Japan both games are

equally popular by people of all ages, it also ensures that participants had

good understanding of the game and should understand when a robot makes

an illegal move. Upon completion of the game participants had a brief inter-
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view with a researcher who asked whether they noticed something unusual

during the game. Participants were free to answer this question the way they

wanted.

6.1.3 Measurements

We used several self-reports (questionnaires) in this study. As a manipulation

check we measured perceived intentionality of a robot using three questions

(“This robot is capable of doing things on purpose.”, “This robot is capable of

planned actions.” and “This robot has goals.”) measured on a 7-point Likert

scale. Moreover, we measured the robots perceived humanlikeness using a

scale derived from [114] (Appendix E) that was back-translated to Japanese.

It consists of 6 items that are rated on a 5-point semantic differential scale

(e.g. “Please rate your impression of the robot on these scales: 1-inanimate,

5-living”).

Furthermore, we measured anthropomorphism by attribution of core hu-

man traits to a robot ([103], Japanese translation [122]) (Appendix D). Par-

ticipants were asked to rate the extent to which a robot possesses human

traits on a 7-point Likert scale (e.g. “The robot is... sociable”). The mea-

sure of HN and UH traits was the same as used in the experiment described

in Chapter 5. In addition, we measured attribution of mind to a robot us-

ing its two dimensions: experience and agency ([95], Japanese version [122])

(Appendix H) - e.g. “To what extent do you think that Robo is capable of...

hunger” on a 5-point Likert scale. Finally, we measured moral agency of the

robot on a 7-point Likert scale using 2 items: “Robo deserves blame for its

wrong-doings” and “Robo is ’morally responsible’ for performing immoral

behaviours”.

6.1.4 Participants

Fifty-two (34 male and 18 female) native Japanese speakers were recruited

for this study. They were undergraduate students of various universities

and departments located in Kansai region. They were paid 2000 Yen for

participation. Their age ranged between 18 and 27 years with mean of 21.54

years old.
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6.2 Results

Before analyzing the results we verified the reliability of the scales used.

Cronbach’s α of .7 or higher is regarded as desirable for a scale to be regarded

as reliable. We found that both dimensions of mind attribution scales had

satisfactory reliability: Experience α = .85 and Agency α = .71. For the

scale of humanlikeness it was necessary to drop the item (“Without Definite

Lifespan - Mortal”) for it to reach the level of reliability that we regarded as

satisfactory for further analysis (Cronbach’s α = .68). Moreover, the scale

created to measure perceived intentionality of a robot was not reliable and

therefore excluded from further analysis. In addition, we found UH and HN

scales to be unreliable. However, as proposed in [123] we separated positive

and negative traits. Both negative UH and HN items had unsatisfactorily low

reliability. However, when negative traits were considered together without

distinguishing between these two dimensions the scale had an acceptable

reliability α = .73. Moreover, the reliability of positive dimensions of HN (α

= .74) permits to treat is as a reliable scale. For UH scale it was necessary to

remove one item (“Conservative”) for it to be reliable (α = .75). Finally, the

scale of moral agency was deemed as acceptably reliable for use in analysis

with Cronbach’s α = .68.

We then proceeded to analyze data in order to see how our manipulation

affected the perception of the robots. We conducted a series of two-way

between subjects ANOVAs with embodiment and a robot’s intentionality as

factors. The assumptions of used statistical tests were met, unless otherwise

specified.

6.2.1 Perceived intentionality

Since the scale of perceived intentionality was not reliable as a manipulation

check for perception of intentionality of a robot we used descriptive statistics

based on the post-study interview with participants. In the unintentional

condition none of the participants indicated any suspicious behaviour of a

robot. In the intentional condition 20 participants said that a robot tried to

cheat during the game, four indicated that it had some technical problems

and two did not report any unusual behavior of a robot (Figure 6.1). There-
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Figure 6.1: Rate of participants who indicated during the interview that a robot cheated,
had an error or reported no suspicious behaviour.

fore, we can conclude that similarly to [191], participants verbally described

a robot’s behavior in intentional terms.

6.2.2 Anthropomorphism & humanlikeness

Firstly, we looked at the measure of humanlikeness of a robot. We used

two-way ANOVA with intentionality and embodiment as factors. We found

a significant main effect of embodiment on perceived humanlikeness (F(1,48)

= 8.46, p = .006, η2G = .15). Geminoid HI-2 (M = 2.83, σ = .73) was

perceived as more humanlike than Robovie R2 (M = 2.25, σ = .75), see

Figure 6.2.

Secondly, we looked at the attribution of humanness along two dimensions

UH and HN as indicators of anthropomorphism. Since the negative traits

were not reliable as separate measures of UH and HN, we used positive UH

and HN traits separately as scales and negative traits formed one scale. We

found an almost significant main effect of a robot’s intentionality on positive

UH (F(1,48) = 3.72, p = .06, η2G = .07). An unintentional robot (M = 4.44,

σ = 1.34) was attributed more positive UH traits than an intentional robot

(M = 3.74, σ = 1.25), see Figure 6.3.

Moreover, we found a marginally significant main effect of embodiment

on positive HN (F(1,48) = 3.92, p = .05, η2G = .08). Robovie R2 (M = 4.48, σ

= 1.13) was attributed significantly more positive HN traits than Geminoid

HI-2 (M = 3.85, σ = 1.16), see Figure 6.4.

We also analyzed the attribution of negative traits as a joint scale of neg-
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Figure 6.2: Rating of humanlikeness. Attribution of humanlikeness between 2 robots.
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Figure 6.3: Rating of positive UH. Attribution of positive UH traits to a robot based on
its intentionality.
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Figure 6.4: Rating of positive HN. Attribution of positive HN traits between 2 robots.

ative UH and HN. A two-way ANOVA with embodiment and intentionality

as between subjects factors showed a significant main effect of embodiment

(F(1,48) = 11.56, p = .001, η2G = .19). The Geminoid HI-2 (M = 2.88, σ =

.81) was attributed significantly more negative human traits than Robovie

R2 (M = 2.21, σ = .61), see Figure 6.5.

6.2.3 Mind attribution

Using a two-way ANOVA with embodiment and intentionality as between

subjects factors we did not find any statistically significant main or interac-

tion effects for attribution of Agency or Experience.

6.2.4 Moral agency

Using two-way ANOVA with embodiment and intentionality as between sub-

jects factors we did not find any statistically significant main or interaction

effects for perception of a robot as a moral agent.

6.2.5 Will to play again

Due to violation of the assumption of normal distribution for parametric

testing for willingness to play again with a robot, we used a permutation
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Figure 6.5: Rating of negative human traits. Attribution of negative human traits between
2 robots.

test with 2 factors and 10000 permutations using the function ezPerm im-

plemented in R. We found the main effect of embodiment on participant will

to play again with a robot, p = .02. Participants were more willing to play

again with Robovie R2 (M = 5.46, σ = 1.53) than Geminoid HI-2 (M = 4.27,

σ = 2.01). Moreover, there was a significant main effect of intentionality, p

= .04. Participants were more willing to play with unintentional (M = 5.38,

σ = 1.77) than intentional robot (M = 4.35, σ = 1.85).

6.3 Discussion

In this study we investigated the impact of a robot’s embodiment and inten-

tionality on anthropomorphism. We were interested in particular in exploring

whether these factors would affect different dimensions of anthropomorphism.

As expected, the results showed that the android, Geminoid HI-2, is

perceived as more humanlike than more machine-like Robovie R2. However,

in contrast with the previous work [45, 97], the robot resembling more a

human was neither attributed more Experience nor Agency. Furthermore,

contrary to our hypothesis, it was not the more humanlike looking robot that

was attributed more positive HN traits, but the robot that was perceived as
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less humanlike. On the other hand, Geminoid HI-2 was attributed more

negative traits from both dimensions than Robovie R2.

These results indicate that the relationship between a robot’s appearance

and anthropomorphism is not linear as previous studies suggested. The lack

of reliability of HN and UH scales can indicate that after interacting with a

robot participants perceived it along positive and negative dimensions rather

than those suggested by literature on dehumanization.

For the attribution of positive UH traits the intentionality of a robot was

more relevant. However, it was the unintentional robot that was attributed

more UH traits rather than the intentional as would have been suggested by

the work on dehumanization. Direct application of dimensions of humanness

would suggest that higher intentionality of a robot would result with it being

attributed more UH traits. However, the results present an opposite pattern.

It is possible that the reason why a robot was attributed less humanness is due

to the task. In this study the robot showed its intentionality by cheating. It

is possible that if intentionality was expressed by positive actions the results

might have been different.

We also did not find any effect of our manipulation on the perception of a

robot as a moral agent. A robot that was intentional was not perceived more

as a moral agent than unintentionally behaving robot. Therefore, a robot’s

perceievd responsibility of actions is not directly related with the dimensions

of humanness, which would be a case for a human being.

6.4 Conclusion

The results of this experiment cast doubts on the multi-dimensionality of

anthropomorphism. A robot that was intentional was not attributed more

traits from HU dimension or perceived more humanlike. This result, put

together with findings of the study presented in the previous chapter where

intelligence of a robot also did not affect its anthropomorphism, suggest that

this dimension can be less relevant in HRI. If dehumanization was a reverse

process to anthropomorphism then both intelligence and intentionality of a

robot should affect the extent to which it is anthropomorphized. Since neither

of this factors has any effect in HRI, it is more probable that UH dimension of
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humanness does not make robots to be perceived as more anthropomorphic

and more efforts should be focused on HN dimension as potentially more

relevant.

Although we were unable to replicate the findings of [97] who suggested

that the degree of humanlikeness of appearance is linearly related with at-

tribution of HN/experience to a robot it is possible that a difference is due

to the task used. [97] used just images of robots rather than have an actual

HRI. Therefore, the follow-up study will investigate the role of appearance

in a different interaction context.
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Chapter VII

Dimensions of anthropomorphism III

The previous two experiments indicate that HN, but not HU dimension of

humanness is relevant for anthropomorphism in HRI. Therefore, they sug-

gested that anthropomorphism is rather a uni-dimensional phenomenon re-

lated mainly with HN or that there are other than HU dimensions. The first

study on dimensions of anthropomorphism showed that it can be affected by

emotionality of a robot. The second study showed that physical appearance

of a robot also can affect HN dimension, but it is not necessarily the more

humanlike looking robot that is attributed more human traits. As the task

used in the previous experiment could be responsible for that paradox, in the

current study a more serious task was used.

Apart from manipulating the appearance of a robot, we also look at

another factor that literature of dehumanization suggests as relevant for HN

dimension of humanness - sociability. Furthermore, it is possible that anthro-

pomorphism is not constant and it can change during several interactions.

Therefore, the current study tries also to investigate the role of repeated

interactions in HRI on anthropomorphism of a robot.

7.1 Materials and Methods

Our study was conducted using 2x2x3 mixed experimental design where a

robot’s embodiment (humanlike vs machine-like) and sociability (positive vs

negative) were between-subjects factors, and number of interactions (Inter-

action I vs Interaction II vs Interaction III) was a within-subjects factor. We

measured a robot’s humanlikeness, and HN and HU dimensions of human-

ness.
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7.1.1 Participants

Sixty native Japanese speakers were recruited by a recruitment agency for the

study. Participants were paid 2000 Yen for time compensation. All partici-

pants were undergraduate students of various universities and departments

located in Kansai area. Only participants who previously participated in a

study involving one of the robots were excluded from selection. Due to a soft-

ware failure, data of two participants was corrupted or not completely saved.

Therefore, we had to exclude that data from the analysis. Out of the re-

maining 58 participants, 26 were female and 32 were male. Their age ranged

from 18 to 36 years with a mean age of 21.47. The study took place at the

premises of Advanced Telecommunications Research Institute International.

7.1.2 Materials and apparatus

All the measurements were conducted using PsychoPy v1.78 that was run on

a laptop. Participants interacted either with Geminoid HI-2 or Robovie R2.

Geminoid HI-2 is the second generation of androids built as a copy of a real

human (see Figure 7.1). Geminoid is indistinguishable from a human being

for several seconds, until people realize its slight imperfections that lead to a

negative feeling [118, 180]. On the other hand, Robovie R2 is a machine like

robot that has some human features, such as a head or hands. During HRI

both robots expressed idle motion that was added to increase their animacy.

Geminoid HI-2 showed movement resembling blinking and breathing, as well

as idle movements of its hands and synchronization of its lips to its speech. As

Robovie R2 does not have a mouth, identical idle behavior was not possible.

Therefore, we implemented a slight head and hand motion during speech.

The experiment took place in a room that was divided into two parts

that were separated by a folding screen in order to prevent seeing the other

side (see Figure 7.2). In the experimental space a robot was placed and

all HRIs occurred there. In the measurement space participants watched an

introduction video that explained the order of the experiment, and they filled

out all the questionnaires on a laptop. This ensured that participants did not

need to judge the robot in its presence as that could have affected the results.

The experimental space was equipped with cameras and the robot’s behaviors
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Figure 7.1: Geminoid HI-2 and a participant.

were controlled by a Wizard-of-Oz who was sitting in another room.

7.1.3 Procedure

Participants were first shown an introduction video that explained the ex-

perimental procedure. They were told that the study involves creative and

persuasive talking and they will need to convince a robot to give them a

job based on the provided CV that was identical for all the participants.

The experimenter ensured that participants understood the instructions and

brought them to a computer. During all HRIs and filling out of questionnaires

the experimenter left the participant alone in the room. The experiment was

divided into 4 phases: pre-interaction video, Interaction I, Interaction II and

Interaction III.

Although we have ensured that none of the participants previously inter-

acted or participated in an experiment with the specific robot to which they

were assigned, it was still possible that they have seen the robot elsewhere.

In particular, in Japan it is common to see robots used in this experiment

in various TV programs. Therefore, in order to minimize the differences in

potential prior exposure in the pre-interaction video phase participants were

asked to watch a short video (∼ 15 seconds) in which a robot (either Robovie

R2 or Geminoid HI-2) in few sentences introduced itself and its capabilities.
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Figure 7.2: Diagram of the experimental and measurement spaces and Wizard-of-Oz room.

The dialogue was identical for both robots. After the video participants filled

out all the questionnaires.

During Interaction I, participants were taken to the experimental room

and sat 1.5 m in front of a robot (see Figure 7.3). They were told to have a

small conversation with it to become familiar before the actual job interview

begins. The robot was introduced as Robo. During this conversation the

robot asked participants three neutral questions (e.g. “Is it cold today?”

or “Where did you come from?”). After a short conversation was finished

participants were asked to fill out the same questionnaires as the first time.

In Interaction II, the experimenter provided a short job description for

which the participant was instructed to apply. Participants were asked to

apply for Engineer and Bank Manager positions. The order of interviews was

counterbalanced between Interaction II and III. Furthermore, a participant

received a CV of a person whom she was supposed to be imitating during the

interview. The CVs were identical for all participants, but the gender of ap-

plicant was always the same as the real gender of a participant. Participants

were asked to use it as a base of their responses, but they could invent the
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Figure 7.3: Experimental setup. Participant sitting in front of Robovie R2 during inter-
action.

information required to answer the questions. In order to motivate partici-

pants for trying to perform the task as well as they can, they were informed

by the experimenter that if they secure a job, they will be paid extra money

as time compensation for their participation in the experiment. They were

given 5 minutes to prepare for the interview. After that time elapsed, the

experimenter collected the CVs and job description sheets, and brought the

participant to the robot.

The interview began with the robot briefly describing the company and

job position for which the participant was applying. After the introduction

the participant was asked 3 job interview questions. The questions were

generic and common for job interviews, e.g. “Please tell me about yourself?”

or “What is your biggest weakness?”. While the participant was responding,

the robot provided feedback using non-lexical conversation sounds and non-

verbal communication. In the positive condition it either nodded or nodded

and uttered “Un” (expression in Japanese of agreement with the speaker).

In the negative condition it either shook its head or nodded its head and

uttered “Asso” (expression in Japanese indicating lack of interest in what

the speaker says that is rather rude). This feedback was initiated by the

Wizard when it was appropriate for the natural flow of conversation, e.g.

when a participant paused to think about her response.
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After each question the robot thanked the participant and asked the next

question. After the third question the robot informed the participant that it

will announce later its decision whether to give a job to a participant (in fact

the decision was never announced). Although the outcome was not provided

directly to a participant, the announcement varied between the conditions.

In the positive condition the robot hinted approval of what the participant

said during the interview. In the negative condition it was not particularly

pleased with a participant’s responses suggesting them to consider applying

elsewhere. At that point participants were asked to fill the questionnaires for

the third time. This time multiple dummy questions regarding the interview

were included. Interaction III was identical as Interaction II, but the CVs,

job positions and questions asked by the robot were different. Participants

were permitted to answer each of the questions freely and we did not measure

the duration of interactions. The whole procedure took approximately one

hour.

7.1.4 Measurements

We explicitly measured the robots’ anthropomorphism on 5-point semantic

differential scales derived from [114] (Appendix E). Moreover, we have mea-

sured 2 dimensions of anthropomorphism: HN and HU on scales developed

by [103] (Appendix D). Both dimensions had 10 items and were measured on

a scale from 1 (not at all) to 7 (very much) (e.g. “The Robo is... shallow”).

The measure of HN and UH traits was the same as used in the experiment

described in Chapter 5. Anthropomorphism, HN and HU scales were avail-

able only in English. Therefore, we conducted a back-translation process to

obtain their Japanese versions. We calculated reliability of each scale sep-

arately for each interaction round using Cronbach’s α. According to [151]

Cronbach’s α>.6 is acceptable for newly developed scales for research pur-

poses. Based on this threshold, all the scales, apart from HU were adequately

reliable. The lowest Cronbach’s α values during any of the three measure-

ments were as follows: anthropomorphism α = .88, HN α = .65 and HU

α = .54. Low reliability of HU scale indicates that the results for this scale

should be interpreted with great caution.
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Figure 7.4: The effect of 3 factors on anthropomorphism. The rating of anthropomorphism
based on sociability and interaction round, and grouped by a robot type.

7.2 Results

To analyze the data we conducted a series of three-way ANOVAs with embod-

iment and sociability as between-subjects factors, and number of interactions

as a within-subjects factor. The assumptions of the statistical tests used were

met, unless otherwise specified.

We looked at one and two-dimensional measures of anthropomorphism.

We expected that there would be a main effect of a robot’s embodiment

and in particular Geminoid HI-2 will be perceived as more humanlike than

Robovie R2. Due to violation of the assumption of normal distribution for

parametric testing for anthropomorphism, we used a permutation test with 3

factors using the function aovp with 1000 iterations from the lmPerm pack-

age [219] using R [172]. We found a non-significant trend for the main ef-

fect of embodiment with probability p=.08 (see Figure 7.4). Geminoid HI-2

(M=2.47, σ=1.1) was more anthropomorphic than Robovie R2 (M=2.17,

σ=.92). Moreover, we found a significant interaction effect between the

robots’ sociability and number of interactions with probability p<.001.

We then proceeded to the 2-dimensional measurement of anthropomor-

phism. In line with previous research, we did not find statistically significant
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Figure 7.5: The effect of 3 factors on Uniquely Human dimension. The rating of Human
Uniqueness based on sociability and interaction round, and grouped by a robot type.

main or interaction effects for the HU dimension (see Figure 7.5).

On the other hand, we found a main effect of embodiment, F(1,54)=5.13,

p=.03, η2G=.07 on HN dimension (see Figure 7.6). Robovie R2 (M=3.16,

σ=.77) was attributed more HN traits than Geminoid HI-2 (M=2.74, σ=.85).

In addition, there was a significant main effect of sociability, F(1,54)=8.46,

p=.005, η2G=.12. Robots with positive attitude (M=3.21, σ=.74) were at-

tributed more HN than with the negative attitude (M=2.67, σ=.85). There

was also a significant main effect of number of interactions, F(2,108)=7.39,

p=.001, η2G=.02. Post hoc tests using the Bonferroni correction for the family

wise error revealed that the robots were attributed more HN traits after Inter-

action I (M=3.4, σ=.77) than after Interaction II (M=2.88, σ=.87), p=.02, or

III (M=2.86, σ=.86), p=.02. Furthermore, there was a significant interaction

effect between sociability and number of interactions, F(2,108)=9.8, p<.001,

η2G=.03. Only for Interaction II [F(1,56)=15.82, p<0.001, η2G=.22] and III

[F(1,56)=7.75, p=.007, η2G=.12] the sociability had a significant effect.
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Figure 7.6: The effect of 3 factors on Human Nature. The rating of Human Nature based
on sociability and interaction round, and grouped by a robot type.

7.3 Discussion

In line with the previous research [97], the HU dimension of anthropomor-

phism was not significantly affected by the embodiment of a robot. Further-

more, attribution of HN traits was affected by the embodiment. However, in

contrast with the previous work [97] it was the less humanlike robot (Robovie

R2) that was attributed more HN. The biggest difference between the work

of [97] and ours are the robots used in the experiments. In the former ex-

periment a single robot was used that either had the back of its head visible

or it had a humanlike face cover. The HN dimension is closely related with

emotions and a robot that had no face is not capable of expressing emotions

with facial expressions. Therefore, it was attributed less capability of experi-

encing (HN). In our experiment the default and fixed appearance of Robovie

R2’s face could be perceived as a smile. However, Geminoid HI-2 has a

highly humanlike face that suggests that it can exhibit facial expressions. As

a result it is possible that participants might have had higher expectations,

but during the interactions the robot’s facial expression remained the same

and was rather stern. That might have been perceived as the robot’s emo-

tional coldness and led participants to attribute less HN to it. Furthermore,
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considering inadequately low reliability of HU dimension, it is necessary to

interpret these results with special care. It is possible that HU dimension is

a different construct in Japan than in Western cultures.

On the other hand, the main effect of sociability on HN dimension sup-

ports the hypothesis that this dimension is relevant for anthropomorphism

in HRI and has similar factors to those shown for humanness in research on

dehumanization. Moreover, looking at the interaction effects we can see that

the lack of sociability by a robot leads to its decreased anthropomorphism.

HN was attributed the most after the first, neutral interaction. When a robot

behaved positively the level of HN was similar as after the neutral conversa-

tion. However, it significantly dropped when it behaved in a negative way as

shown by significant interaction after Interaction II and Interaction III.

7.3.1 Limitations and Future Work

A limitation of this study is that participants were allowed to freely interact

with a robot for as long as they wanted. Therefore, we did not consider the

interaction duration in this study, but only the number of interactions. It

is possible that participants who interacted with a positively-behaving robot

were encouraged by its positive feedback to provide more detailed answers for

their questions and as a result interacted longer with a robot. This extended

interaction could have also increased familiarity of a robot. Future exper-

iments could involve longer interactions with a robot with sessions spread

over multiple days.

7.4 Conclusion

This study further supports findings of the previous two experiments by

suggesting that HU dimension of humanness is less relevant for anthropo-

morphism in HRI. On the other hand, HN dimension was found to be more

important. Surprisingly, in this study the more machine-like robot was at-

tributed more HN traits than highly humanlike robot. This result is in the

line with the study reported in the previous chapter. Therefore, we can

conclude that the relationship between humanlikeness in appearance and an-

thropomorphism is not linear as was suggested by [97].
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Moreover, this experiment showed another factor of HN dimension that

significantly affects anthropomorphism of a robot. Sociability, similarly to

emotionality, resulted in higher attribution of HN traits. In particular, the

results showed that the lack of sociability can lead to decreased anthropo-

morphizability.
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Chapter VIII

Conclusions

8.1 Contributions

This thesis investigated the topic of anthropomorphism in HRI: how to mea-

sure it, the process itself as well as the factors affecting it. Five empirical

studies were conducted in order to achieve the aims set in Chapter 1 and

answer the research questions posed in Chapter 2. Based on that work, this

dissertation went beyond the current state-of-the-art in the field in several

ways.

Empirical work showed that the inversion effect can be observed for im-

ages of robots and therefore at least some of them are perceived more like

humans than objects. Based on that finding a new measurement tool for hu-

manlikeness was developed and validated. This new measurement tool based

on the inversion effect showed an unsatisfactory performance compared with

previously validated measurement tools and therefore currently its usage is

limited. However, the inversion effect taps on the implicit processing of hu-

manlikeness, while the questionnaires used to validate it measure explicit

rating of humanlikeness. Future research should investigate whether human-

likeness is a result of Type I or Type II process (see Future work section for

details). If humanlikeness is due to Type I or Type II processes, or predom-

inantly Type I process, that would justify the small percentage of variance

explained by the inversion effect of self-reported rating of humanlikeness. In

that case, the inversion effect measurement and questionnaires would mea-

sure different aspects of humanlikeness, and could not be compared against

each other.

Another contribution of this dissertation is in showing the importance of

conscious and reflective (Type II) process in anthropomorphism. Previously,
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anthropomorphism was believed to be a result of Type I, or both Type I and

Type II processes. However, the research presented indicates that anthropo-

morphism does not require Type I processing and is a Type II process.

The idea of reversing the process of dehumanization as a model of anthro-

pomorphism was also evaluated. The results indicate that anthropomorphism

and dehumanization are not reverse processes. In particular, the dimension-

ality of anthropomorphism was explored. Compared with dehumanization,

data does not support existence of two dimensions of anthropomorphism.

The HU dimension did not affect attribution of human traits to a robot.

However, the other dimension, HN, lead to higher anthropomorphisation of

a robot. Therefore, this dissertation contributed to our knowledge by empha-

sizing that HN dimension is more relevant for robots’ anthropomorphisation.

Despite, not finding the two dimensions of humanness in this research it

still remains possible that anthropomorphism is not a unidimensional phe-

nomenon. There could exist dimensions not considered in this research.

Finally, factors affecting anthropomorphism were investigated. The re-

search showed that the factors that belong to the HN dimension of human-

ness, such as sociability or primary emotions, together with a robot’s physical

appearance can be used to form a model of anthropomorphism in the context

of HRI.

8.2 Summary

Multiple factors were proposed to affect anthropomorphism of robots. How-

ever, there was a lack of a model of anthropomorphism that could systemati-

cally explain why these factors lead to attribution of human traits to robots.

In this thesis, a model of anthropomorphism was proposed that used research

on humanness as a key aspect affecting attribution of human characteristics

to robots. In particular, it was proposed that the factors that lead to de-

privation of human qualities to dehumanized humans could be also used to

make robots more anthropomorphic. Therefore, the proposed model of an-

thropomorphism was a reverse model of dehumanization.

The research on humanness indicated that there are two dimensions of it

and therefore it was also considered in this dissertation that anthropomor-
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phism could be a multidimensional phenomenon. Finally, the involvement

of dual-process in anthropomorphism was also explored. A summary of the

results of experiments presented in this thesis are provided below.

• Inversion effect

Chapter 3 presents the development and validation of a cognitive mea-

sure of humanlikeness. The inversion effect is used to indicate whether

the appearance of a robot will be cognitively perceived as an object or

human. The results of the study presented in that chapter show that

robots (with various appearances) as a category induce the inversion

effect similarly to humans. Therefore, their perception is more similar

to perception of humans than merely objects.

Moreover, the strength of the inversion effect induced by a robot is

positively linearly related with the humanlikeness of a robot indicated

in a questionnaire. However, the suitability of the inversion effect as a

measurement tool of humanlikeness is limited due to the low variance

that it can explain.

• Type II process of anthropomorphism

In Chapter 4 involvement of Type I and Type II processing in anthro-

pomorphism is explored. The results suggest that anthropomorphism

is not a dual-process and it is mainly a conscious phenomenon. More-

over, as participants did not change their responses to please the exper-

imenter, at least in this study, self-reports were suitable to measure an-

thropomorphism. Furthermore, a significant correlation between treat-

ment of a robot as a social actor and anthropomorphism suggests that

the former can be used as an indication of the latter.

• Emotionality as a factor of anthropomorphism

Chapter 5 presents the findings of the first study investigating the di-

mensionality of anthropomorphism. The results provide only partial

support for the hypothesis of two dimensions of anthropomorphism.

Emotionality of a robot significantly affected attribution of HN traits
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and anthropomorphism, but not HU traits, which is in line with re-

search on dehumanization. However, perceived intelligence of a robot

did not affect its anthropomorphism nor attribution of HN or HU traits

to it. This study highlighted the need for additional research that will

answer the question, whether only perceived intelligence does not affect

a robot’s anthropomorphizability or entire HU dimension of humanness

is not relevant for it.

• Humanlikeness and anthropomorphism

The findings presented in Chapter 6 put together with the results of

the previous study question the hypothesis on multi-dimensionality of

anthropomrophism. A robot that was perceived as more intentional

was not anthropomorphized stronger than a robot perceived as less

intentional. This finding, similarly with the previously reported lack

of impact of perceived intelligence suggests that the HU dimension

of humanness is less important for a robot’s perceived humanlikeness

and anthropomorphism. As a result, this work also questions whether

dehumanization and anthropomorphism are reverse phenomena.

Furthermore, this study also showed that humanlike appearance of a

robot is not linearly related with anthropomorphization of it in HRI

as was previously suggested by research using images of robots. In the

study presented in that chapter, a robot perceived as more humanlike

due to its appearance was attributed less HN traits than a less human-

like robot. Therefore, an experiment involving different interaction

contexts could provide additional information on this relationship.

• Sociability as a factor of anthropomorphism

Chapter 7 presents the last experimental study that indicates that so-

ciability, similarly to emotionality, is another factor of HN dimension

that affects a robot’s anthropomorphizability. It highlights that this

dimension of humanness is more important for anthropomorphism in

HRI. The second finding of this experiment is in line with the previous

study and further indicates the lack of linear relationship between hu-
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manlike appearance and attribution of HN traits to a robot. Therefore,

it can be concluded that perceived humanlikeness and psychological an-

thropomorphism are distinct phenomena.

Although the empirical work did not fully support the proposed model of

anthropomorphism in its original form, the findings should remain of inter-

est for different groups of scientists. Engineers are recommended to focus on

implementing HN, especially primary emotions and sociability, capabilities

rather than HU in order to create anthropomorphic robots. Furthermore,

highly humanlike appearance of robots does not necessarily lead to their

higher anthropomorphization if the expectations regarding the robots capa-

bilities are not met. Social scientists are provided with empirical evidence

that anthropomorphism and dehumanization are not reverse phenomena, al-

though they hold some related features. Cognitive scientists could be inter-

ested in the findings regarding the processing involved in anthropomorphism.

In particular, the reported involvement of Type II processing rather than

Type I processing in anthropomorphism will require further investigation.

8.3 Limitations

The limitations of single studies were discussed in the chapters that intro-

duced them. In this section, general limitations of the work presented in

this thesis are discussed. An important aspect of science is reproducibility.

Some of the findings found during this research were shown in several stud-

ies. The effect of HN and the lack of it of HU on anthropomorphism in HRI

has been tested in more than one experiment, using different factors and

interactions contexts. On the other hand, some other findings were shown

only in a single study. The inversion effect of robots or the implicit measure

of anthropomorphism were investigated in single experiments. It is crucial

that the suggested outcomes are independently verified by other researchers

before firm conclusions can be drawn.

Another limitation of the presented work is relatively small sample sizes

used in the experiments. Although ideally bigger samples are preferable, re-

searchers must strike a balance between including large samples and what

is practical from the recruitment point of view. Using p values as the sole
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indicator of whether there is an effect of an independent variable on a de-

pendent variable is influenced by the sample size. In this thesis, effect sizes

were provided to provide a richer picture of the results. However, it remains

possible that if bigger samples were used, some of the reported statistically

non-significant results would be significant. Power analysis could be used to

guide the decision process regarding sample sizes in the studies.

Furthermore, it is important to note that the presented research was con-

ducted in two countries: New Zealand and Japan. The cultures in these

countries differ. None of the studies was aimed at comparing multicultural

differences on the proposed model of anthropomorphism between both cul-

tures. It is possible that the results are specific for each country and cannot

be generalized across the cultures. However, at least one study shows that

measuring anthropomorphism using HN and HU traits is a valid measure for

HRI in Japanese context [122].

8.4 Future work

The results presented in this dissertation indicate that the approach used

in this work can provide valuable insight on the evaluated phenomena and

it is worth continuing in the future. Especially our understating of the re-

lationship and processes involved in psychological anthropomorphism and

perceived humanlikeness is limited. Future research should involve a larger

range of implicit measures, such as mouse tracker, and physiological mea-

sures, e.g. amylaze, to further explore whether anthropomorphism is a result

of only Type II processing.

Furthermore, it is not known yet why perception of physical humanlike-

ness of a robot is linearly related with anthropomorphism while using images

of robots, however once there is actual interaction with a robot involved, it

is the less humanlike looking robot that is being anthropomorphized more

than highly humanlike robot. It is possible that physical appearance of a

robot creates a potential for it to be more anthropomorphic. It is sufficient

to see an image of a robot for it to be activated. However, when in an actual

interaction a robot is not capable of fulfilling these expectations, there is a

repulsive reaction that leads to stronger denial of humanness to such a robot.
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The previous studies investigated mainly whether anthropomorphism is

a result of Type I or Type II processing. It would be valuable to investigate

the same aspect for the perception of physical humanlikeness of a robot. This

would also help to understand better whether the proposed inversion effect

measurement is inferior to existing measurement tools or it measures different

aspects of perceived humanlikeness. If humanlikeness involves Type I pro-

cessing, future work should put more effort in developing implicit measures

of the phenomenon.

Another interesting area worth exploration is investigating the unique

consequences of anthropomorphism and humanlikeness. Since these two phe-

nomena differ from each other, it is also possible that they have unique

consequences for HRI. Therefore, distinguishing between them and better

understanding their impact could help to design robots and interactions that

could benefit from advantages of these phenomena, without inheriting their

drawbacks.

Finally, in spite of not finding the two dimensions of humanness hypoth-

esized in this dissertation to exist for anthropomorphism, it is not possible

to exclude a possibility that there exist some other dimensions of anthropo-

morphism not considered in this work. Since each of these dimensions could

have a unique impact on HRI it is worth further investigating the topic of

dimensionality of anthropomorphism in HRI.
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Appendix A

Godspeed Anthropomorphism Questionnaire

Please rate your impression of the robot on these scales

Fake 1 2 3 4 5 Natural

Machinelike 1 2 3 4 5 Humanlike

Unconscious 1 2 3 4 5 Conscious

Artificial 1 2 3 4 5 Lifelike
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Appendix B

Individual Differences in Anthropomorphism

Questionnaire

Please rate on a scale from 0 (Not at all) to 10 (Very much) to

what extent do you agree with the following questions

• To what extent does technology – devices and machines for manufac-

turing, entertainment, and productive processes (e.g., cars, computers,

television sets) – have intentions?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the average fish have free will?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the average mountain have free will?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does a television set experience emotions?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the average robot have consciousness?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent do cows have intentions?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much
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• To what extent does a car have free will?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the ocean have consciousness?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the average computer have a mind of its own?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does a cheetah experience emotions?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the environment experience emotions?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the average insect have a mind of its own?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does a tree have a mind of its own?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the wind have intentions?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much

• To what extent does the average reptile have consciousness?

Not at all 0 1 2 3 4 5 6 7 8 9 10 Very much
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Appendix C

Rational-Experiential Inventory

To what extent do you agree with the following statements

Need for Cognition

• I don’t like to have to do a lot of thinking. (R)

Strongly disagree 1 2 3 4 5 Strongly agree

• I try to avoid situations that require thinking in depth about something.

(R)

Strongly disagree 1 2 3 4 5 Strongly agree

• I prefer to do something that challenges my thinking abilities rather

than something that requires little thought.

Strongly disagree 1 2 3 4 5 Strongly agree

• I prefer complex to simple problems.

Strongly disagree 1 2 3 4 5 Strongly agree

• Thinking hard and for a long time about something gives me little

satisfaction.

Strongly disagree 1 2 3 4 5 Strongly agree

Faith in Intuition

• I trust my initial feelings about people.

Strongly disagree 1 2 3 4 5 Strongly agree
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• I believe in trusting my hunches.

Strongly disagree 1 2 3 4 5 Strongly agree

• My initial impressions of people are almost always right.

Strongly disagree 1 2 3 4 5 Strongly agree

• When it comes to trusting people, I can usually rely on my “gut feel-

ings.”

Strongly disagree 1 2 3 4 5 Strongly agree

• I can usually feel when a person is right or wrong even if I can’t explain

how I know.

Strongly disagree 1 2 3 4 5 Strongly agree
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Appendix D

Human Nature and Human Uniqueness Scale

To what extent do you agree with the following statements

Human Nature

• The robot is curious.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is friendly.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is fun-loving.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is trusting.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is aggressive.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is distractible.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is impatient.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree
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• The robot is jealous.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is nervous.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Human Uniqueness

• The robot is broadminded.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is humble.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is organized.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is polite.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is thorough.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is cold.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is conservative.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is hard-hearted.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree
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• The robot is rude.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

• The robot is shallow.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree
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Appendix E

Anthropomorphism Scale

Please rate your impression of the robot on these scales

Artificial 1 2 3 4 5 Natural

Synthetic 1 2 3 4 5 Real

Inanimate 1 2 3 4 5 Living

Human-made 1 2 3 4 5 Humanlike

Mechanical Movement 1 2 3 4 5 Biological Movement

Without Definite Lifespan 1 2 3 4 5 Mortal
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Appendix F

Godspeed Perceived Intelligence Questionnaire

Please rate your impression of the robot on these scales

Incompetent 1 2 3 4 5 Competent

Ignorant 1 2 3 4 5 Knowledgeable

Irresponsible 1 2 3 4 5 Responsible

Unintelligent 1 2 3 4 5 Intelligent

Foolish 1 2 3 4 5 Sensible
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Appendix G

Primary Emotions

To what extent is the NAO capable of experiencing the following

emotions?

• Excitement

Not at all 1 2 3 4 5 6 7 Very much

• Joy

Not at all 1 2 3 4 5 6 7 Very much

• Surprise

Not at all 1 2 3 4 5 6 7 Very much

• Happiness

Not at all 1 2 3 4 5 6 7 Very much

• Pleasure

Not at all 1 2 3 4 5 6 7 Very much

• Anxiety

Not at all 1 2 3 4 5 6 7 Very much

• Fear

Not at all 1 2 3 4 5 6 7 Very much
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• Pain

Not at all 1 2 3 4 5 6 7 Very much

• Sadness

Not at all 1 2 3 4 5 6 7 Very much

• Anger

Not at all 1 2 3 4 5 6 7 Very much
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Appendix H

Mind Attribution Scale

To what extent do you agree with the following statements?

Agency

• To what extent do you think that Robo is capable of self-control?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of morality?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of having memory?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of emotion recogni-

tion?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of planning?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of communication?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of thought?

Not at all 1 2 3 4 5 Very much
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• To what extent do you think that Robo is capable of hunger?

Not at all 1 2 3 4 5 Very much

Experience

• To what extent do you think that Robo is capable of hunger?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of fear?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of pain?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of pleasure?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of rage?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of desire?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of having personality?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of consciousness?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of pride?

Not at all 1 2 3 4 5 Very much
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• To what extent do you think that Robo is capable of embarrassment?

Not at all 1 2 3 4 5 Very much

• To what extent do you think that Robo is capable of joy?

Not at all 1 2 3 4 5 Very much
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